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ABSTRACT. Environmental decision-making commonly involves multifaceted problems that demonstrate considerable uncertainty. 

Monte Carlo simulation approaches have been employed in a variety of environmental planning venues to address these uncertain aspects. 

Simulation-based outputs are frequently presented in the form of probability distributions. Recently an approach referred to as simulation 

decomposition (SD) has been introduced that extends the analysis of Monte Carlo results by enhancing the explanatory power of the 

cause-effect relationships between the multi-variable combinations of inputs and the simulated outputs. SD constructs sub-distributions 

of the simulation output by pre-classifying some of the uncertain input variables into states, clustering the various combinations of these 

different states into scenarios, and then collecting simulated outputs attributable to each multi-variable input scenario. Since the contri- 

bution of subdivided scenarios to the overall output is easily portrayed visually, SD can highlight and disclose previously unidentified 

connections between the multi-variable combinations of inputs on the outputs. An SD approach is generalizable to any Monte Carlo 

model with negligible additional computational overhead and, hence, can be readily used for environmental analyses that employ 

simulation models. This study illustrates the efficacy of SD in environmental analysis using a carbon capture and storage project from 

China. 
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1. Introduction 

Environmental planning can prove to be an extremely 

challenging and complicated activity (Loughlin et al., 2001; 

Janssen et al., 2010). In the environmental decision-making 

realm, final decisions are often constructed based not only upon 

clearly articulated modelling requirements, but also upon nu-

merous political, socio-economic, and environmental require-

ments that must remain inherently subjective (Loughlin et al., 

2001; Zechman and Ranjithan, 2004). Thus, environmental de-

cision-making typically involves complex problems possessing 

objectives and design requirements that are very difficult to 

capture when their supporting decision models are formulated 

(Hipel and Ben-Haim, 1999; Mowrer, 2000; De Kok and Wind, 

2003; Brugnach et al., 2007; Matthies et al., 2007; Fuerst et al., 

2010; Hipel and Walker, 2011; Castelletti et al., 2012; Lund, 

2012; Walker et al., 2012). Environmental planning becomes 

even more complicated when the system components contain 

extensive stochastic uncertainties (Baetz, 1990; Yeomans, 2008; 

Gunalay et al., 2012; Farr et al., 2016; Han et al., 2017). 

Monte Carlo simulation approaches have been applied to  
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a variety of environmental planning settings in order to circum- 

vent some of these uncertainty issues (see, for example: Open-

shaw and Whitehead, 1985; Ridlehoover, 2004; Byer and Yeo-

mans, 2007; Byer et al., 2009; Byer et al., 2011; Vithayasricha-

reon and Macgill, 2012; Kim et al., 2013; Farr et al., 2016; Han 

et al., 2017). An effective simulation analysis needs to capture 

not only the ranges of realistic possible out-comes, but also the 

distributional nature of how the identified risks “behave” be- 

tween the identified extremes (Byer et al., 2011; Kleijnen, 

2018). Monte Carlo methods can be used to as sess the potential 

impacts on different systems based upon the likelihoods of 

certain events (Byer and Yeomans, 2007; Byer et al., 2009). 

Since its resulting outputs can be expressed in a distributional 

format, simulation yields more complex descriptions than a sin-

gle, deterministic value (Kleijnen, 2018).  

However, any subsequent output analysis provides chal-

lenges as to how to effectively convey the probabilistic mean-

ing of the stochastic impacts determined. While the impacts 

could sometimes be expressed numerically as average values 

and ranges, at other times they can be more effectively repre-

sented graphically as probability distributions (Kleijnen, 2018). 

Although simulation provides an effective means for compar-

ing stochastic system behaviours, it possesses no formal mech- 

anism to actually calculate good system solutions. Thus, the 

principal decisions associated with simulation must be left to 

those who examine the uncertainties represented by these sim-
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ulated distributional outputs (Byer et al., 2009). While Monte 

Carlo methods have been applied to wide variety of problems 

(Law and Kelton, 2000), simulation and the way its outputs are 

analyzed have remained relatively static over time (Kleijnen, 

2018).  

Recently, Kozlova et al. (2016) introduced an ancillary ap-

proach referred to as simulation decomposition (SD) that ex-

tends the analysis of simulation results by enhancing the ex-

planatory power of the cause-effect relationships between the 

input variables and the simulation results in multi-variable in-

vestment projects. Typically, these simulation-based invest-

ment outputs are displayed in the form of histogram distribu-

tions. In SD, Kozlova et al. (2016) classified the possible out-

comes of selected uncertain variables into states and then used 

combinations of these states to decompose the simulated output 

histogram into a number of sub-distributions. The decomposed 

sub-distributions could then be matched to state-combinations 

of the variables containing relevant actionable information. 

Most significantly, these sub-distributions can be superimposed 

onto an overall output distribution figure to permit a direct vi-

sualization of the specific impacts of the decomposed, multi-

variable groups of input combinations. This visualization of the 

decomposition facilitates subsequent managerial decision- 

making with regards to the studied investments. The SD ap-

proach reflects features of both sensitivity and scenario analy-

sis that are typically employed to complement investment anal-

yses. The method is also generally usable and is not context de-

pendent.  

In this paper, the efficacy of SD is extended into an envi-

ronmental analysis context and is illustrated using a carbon 

capture and storage (CCS) case taken from Chen et al. (2016). 

The study is structured to ascertain how a proposed CCS proj-

ect in China would be affected by whether or not the market 

price of carbon was independent of a subsidy. A Monte Carlo 

simulation approach is employed and an SD analysis is applied 

to the output distributions so that an appropriate visualization 

of the combined multi-variable input effects becomes evident. 

2. Simulation Decomposition Approach 

Although Monte Carlo techniques enjoy an extensive his-

tory of application to a wide spectrum of different problems, 

the approach-and the way its results have been analyzed-has 

remained relatively unchanged (Kleijnen, 2018). Kozlova et al. 

(2016) proposed SD as an enhancement to the explanatory 

power of simulation by further exploiting the cause-effect rela-

tionships inherent between the input variables and the corre-

sponding output. While this section briefly outlines the SD ap-

proach, more extensive details and descriptions can be found in 

Kozlova et al. (2016).  

The fundamental steps used for constructing a simulation 

decomposition are schematically illustrated in Figure 1 and ex-

plained below: 

1) Identify the input variables
iV and the potential distribution 

ranges that these variables can assume. These variables 

correspond to those that would “normally” be simulated in 

a classical Monte Carlo simulation model. 

2) Of the input variables from Step 1, identify the key vari-

ables of specific interest to the decision-maker and estab-

lish relevant states ijA for them (for example: low-high, 

optimistic-expected-pessimistic, etc.). The identified states 

highlight different outcome levels in terms of that specific 

variable. 

3) For each key variable in Step 2, determine suitable nu-

merical boundary values ijB corresponding to each of their 

identified relevant states ijA . These boundaries may be ei-

ther sharp or fuzzy depending upon circumstances. 

4) Determine all possible combinations of the states of the 

key variables. Each of these combinations corresponds to 

a multi-variable scenario sub-grouping
kG of the to-be-de-

composed portion of the total simulation. The total number 

of these multi-variable combinations is necessarily a func-

tion of the number of different states identified in Step 2. 

For example, for two key variables
1V and

2V in Figure 1 

with three states for
1V and two states for

2V , the total num-

ber of groups is six. 

5) Run the Monte Carlo, assigning the result of each simu-

lated iteration to the output distribution for the “full” sim-

ulation while simultaneously noting the specific decom-

posed sub-distribution corresponding to the input combi-

nation
kG . The identification of the correct sub-distribution 

for each iteration is achieved by mapping the randomly 

generated values of each individual input to their corres-

ponding states ijA , then mapping these states into the ap-

propriate multi-variable scenario combination
kG . 

6) Construct appropriate output graphs and tables of the sim-

ulated outputs. These outputs should display both the over-

all distributional summaries of the results plus the decom-

posed summaries projected onto the global figures. 

In effect, SD creates sub-distributions of the complete sim-

ulation output by pre-classifying some of the uncertain input 

variables into states, clustering the various combinations of 

these different states to form scenarios, and then accumulating 

simulated outputs from each multi-variable scenario. This en-

ables the creation not only of a single “overall” distribution 

from the simulated results, but simultaneously also a subdi-

vision of this output into several sub-distributions based upon 

the state combination scenarios. Since the contribution of sub-

divided scenarios to the overall output is readily visualized, SD 

can clearly unveil connections between input circumstances 

(the multi-variable scenarios) and the underlying consequences 

to which they lead (the simulated results). The SD visualization 

can be easily implemented by color-coding the overall distri-

bution in accordance with which group (the multi-variable sce-

nario) a particular portion of the distribution belongs to. In es-

sence, the SD distribution is represented by a stacked histo-

gram, where series represent the scenarios that together add up 

to the overall ‘full’ distribution.  

In other words, SD enables decomposing the overall distri-

bution of outcomes into a set of scenarios. Hence, this enables 

decision-makers to more effectively visualize and analyze the 

simulation results. The SD approach is completely genera-

lizable, can be appended as an ancillary extension to any Monte 

Carlo model with negligible additional computational overhead, 
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Figure 1. Schematic representation of the simulation decomposition approach. 

 

and can be employed completely independently of the simula-

tion context. 

3. Case Study of Simulation Decomposition Used in 

Carbon Capture Planning 

In this section, a numerical illustration of a proposed car-

bon capture and storage (CCS) project in China will be used to 

show how the SD approach can be effectively extended into en-

vironmental analysis. All of the data and parameter estimates 

have been taken directly from Chen et al. (2016). The broader 

context of the case and its motivation are presented first, fol-

lowed by the technical details of the investment modeling and 

its corresponding simulation model, and then the results of the 

SD are analyzed. Finally, the benefits of the SD approach are 

discussed relative to the context of the case. 

3.1. The Case Background 

China is the world’s largest emitter of CO2 and generated 

9,839 million tonnes (Mt) in 2017 (Global Carbon Project, 

2018). This CO2 output constitutes more than one third of all 

global emissions (Global Carbon Project, 2018). Since coal-

fired power plants produced 73% of China’s emissions, this 

corresponds to essentially one quarter of the entire global 

carbon output (Global Carbon Project, 2018). Therefore, ir-

respective of any innovation and acceleration in the develop-

ment of renewable energy sources, the coal dominated structure 

of the Chinese power sector will continue to heavily influence 

global CO2 emissions into the foreseeable future. Consequent-

ly, carbon capture and storage of these emissions has been prof-

fered as the relevant decarbonization option (Chen et al., 2016). 

Unfortunately, previous CCS-only investments have repeatedly 

proved to be too expensive and unprofitable (see, for example, 

Rammerstorfer and Eisl, 2011). 

After completing several regional pilot projects, China is 

now on the verge of implementing a national emission trading 

scheme (Carbon Brief, 2018). Chen et al. (2016), Wang and Du 

(2016), Fan et al. (2018), and Wang and Qie (2018) have pro-

vided CCS policy insights based upon the introduction of this 

new carbon trading market. All of these insights dictate the 

need for some form of supplemental subsidy for CCS in addi-

tion to the carbon market, itself.  

As noted above, coal power plants are responsible for 

more than 70% of national CO2 emissions. With carbon capture 

efficiency currently at approximately 90%, this would effect-

tively imply a subsidization of 66% of the overall carbon mar-

ket price (Chen et al., 2016). Therefore, it is entirely plausible 

that any extra CCS subsidy of coal power plants would signif-

icantly distort the carbon price of the entire market. 

To assess the subsidy distortion concept, a Monte Carlo 

simulation of the CCS investment model will be employed for 
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the cases (i) without and (ii) with correlation between the mar-

ket price and the subsidy. In these investments, the profitability 

is measured by the net present values (NPV) of the investments 

(in $millions). In order to clearly visualize any effect of corre-

lation on the output distributions of the NPVs, SD analysis will 

be applied in conjunction with the Monte Carlo. In all previous 

studies, the market price of carbon has been modelled as an in-

dependent stochastic variable using geometric Brownian mo-

tion that is also independent of the requisite extra subsidy. 

3.2. The Case Modeling 

The illustrative model centres around the construction of a 

modern 600 MW coal power plant with CCS (Chen et al., 

2016). The expense components of the project include the ini-

tial infrastructure investment cost, plus the difference in the 

operations and maintenance costs of the plant with- and with-

out-CCS. In addition, carbon transportation and storage costs 

are also incorporated. The profit components include revenues 

from the carbon market and from the subsidy payments. Table 

1 provides the values for the parameter estimates employed in 

the project (Chen et al., 2016). The time horizon for the invest-

ment period is set at 35 years.  

Table 1. CCS Data Taken from Chen et al. (2016) 

Parameter Value Units 

Installed capacity 600 MW 

Utilization hours 5,500 hours/year 

Capacity factor 63% Per cent 

Production 3,300 GWh/year 

CO2 emission (rate) 0.9 kg/kWh 

CO2 emission (annual) 2,970,000 tonnes/year 

CO2 capture efficiency 90% Per cent 

CO2 capture (annual) 2,673,000 tonnes/year 

Investment cost (rate) 538 $/kW 

Investment cost (annual) 322.8 $Millions 

Operations & Maintenance cost 

(rate) 

10% Per cent 

Operations & Maintenance 

(annual) 

56 $Millions/year 

Transport & storage (rate) 13 $/tonne 

Transport & storage (annual) 35 $Millions/year 

In essence, after installing CCS in year 1, the coal power 

plant continues to operate over the next 35 years. During this 

period, costs are incurred as the emissions are captured, trans-

ported, and stored. For investment valuation purposes, only 

cash flows related to the introduction of CCS are considered. 

This implies that revenues from electricity sales and coal costs 

are not included in the model, and that basic maintenance costs, 

except those directly attributable to the introduction of CCS, 

are omitted.     

The key uncertain input variables for the Monte Carlo 

model are identified as the carbon price and the subsidy pay-

ment. The carbon price is generated from a uniform distribution 

in the range [0, 50] $/tonne. For decomposition purposes, the 

three possible relevant states identified for the carbon price to-

gether with their corresponding value ranges are: (i) low in the 

range [0, 10) $/tonne; (ii) realistic in the range [10, 20) $/tonne; 

and (iii) fantastic in the range [20, 50] $/tonne. Similarly, the 

subsidy payment is generated from a uniform distribution in the 

range [0, 0.05] $/kWh. For the subsidy payment, the two rele-

vant states together with their corresponding value ranges are 

identified as: (i) low in the range [0, 0.025) $/kWh; and (iii) 

high in the range [0.25, 0.05] $/kWh. Based upon the states 

identified for these two key variables, there are six possible 

input combinations, or scenarios, to be employed for decom-

posing the total simulation. Table 2 provides a complete listing 

of these scenarios. 

Table 2. Six Simulation Decomposition Scenarios for Differ-

ent Combinations of CO2 Price Levels and Subsidy Amounts 

Scenario Subsidy $/kWh CO2 Price $/tonne 

1 Low [0, 0.025) Low [0, 10) 

2 Low [0, 0.025) Realistic [10, 20) 

3 Low [0, 0.025) Fantastic [20, 50] 

4 High [0.025, 0.05] Low [0, 10) 

5 High [0.025, 0.05] Realistic [10, 20) 

6 High [0.025, 0.05] Fantastic [20, 50] 

The Monte Carlo model with SD was then run twice: (i) 

for the case where there is no dependency between the carbon 

price and the subsidy, and; (ii) for the case where a correlation 

does exist between the price and the subsidy. In each case, the 

simulation was performed for 10,000 iterations. For the case in 

which there is a correlation, a revenue outflow is added to re-

present revenue loss from the carbon market to account for cir-

cumstances in which the CO2 price reacts to the subsidy intro-

duction (Chen et al., 2016). This revenue loss is set equal to the 

subsidy amount weighted by the corresponding share of the 

emissions coming from the coal power plants in China (namely 

73% as of 2018). For simplicity, the reaction of CO2 prices is 

assumed to be both immediate and constant over time. For each 

iteration of the Monte Carlo, the result is assigned to the output 

distribution for the “full” simulation and the specific de- 

composed scenario corresponding to the input combination is 

noted. 

3.3. Results 

The resulting NPV distribution for the case without the 

price-subsidy dependency is shown in Figure 2, while the dis-

tribution for the NPV output with a price-subsidy dependency 

appears in Figure 3. The entire figures characterize the overall 

output distributions, while the various shadings correspond to 

the multi-variable scenarios projected onto the output. The 

summary statistics for each scenario and both cases with and 

without the dependency are presented in Table 3. 

As can be observed from the figures, the minimum NPVs 

are equal for both cases. This corresponds to the situation with 

zero subsidy and zero carbon price. Clearly, the CCS invest-

ment is unprofitable without any support. However, the max-

imum NPVs for the two cases differ quite substantially. The far 

lower NPVs for the case with correlation are caused by the low-

er demand in emission allowances due to the direct subsidiza-
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tion from CCS. This leads to a reduced CO2 price which causes 

the substantially lower CO2 revenues. From an investment per-

spective, the total magnitude of the impact of this effect can be 

as much as $2 billion for the 600 MW coal power plant (the dif-

ference between maximum values of this sixth scenario).  

Observing the sub-distribution impacts using the SD sce-

narios, the different correlation effect cases clearly cause sig-

nificantly different CCS profitability profiles. For the uncor-

related case, only the low-subsidy-low-carbon-price scenario 

(Scenario 1 in Figure 2) is always entirely negative. All of the 

other scenarios (Scenarios 2 ~ 6) show positive NPVs over 

some, if not most, of their distributions. In the correlated case, 

only two scenarios, low-subsidy-fantastic-carbon-price and 

high-subsidy-fantastic-carbon-price (Scenarios 3 and 6 in Fig-

ure 3), possess partially positive NPVs–specifically, only under 

the circumstances in which there is a fantastic market price of 

carbon does the investment in CCS become profitable. All of 

the other scenarios (Scenarios 1, 2, 4, 5) remain completely un-

profitable throughout their entire distribution ranges. Further-

more, it can be observed from Figure 3 that the correlation ef-

fect causes a negative shift of all of the high subsidy scenarios 

onto the low subsidy scenarios relative to Figure 2. The same 

can be concluded from Table 3, e.g., the minimum values of 

low subsidy scenarios (Scenarios 1 ~ 3) are very close between 

no correlation and correlation cases, while the difference is 

much higher for the high subsidy scenarios (Scenarios 4 ~ 6). 

This observation clearly highlights the futility of subsidy in-

creases for situations where there is correlation with the carbon 

price because the increased subsidy is immediately offset by a 

corresponding decrease in CO2 price.

 

 

Figure 2. NPV ($ Millions) of CCS investment for a 600MW coal plant with carbon prices independent of subsidy. 

 

 

Figure 3. NPV ($ Millions) of CCS investment for a 600MW coal plant with a linear dependence between carbon prices and   

the Subsidy. 

 

Table 3. Summary Statistics of Sub-Distributions for the Two Simulations: with and without Correlation (all Values in $ Millions) 

Scenario Subsidy CO2 Price 
Without correlation (Figure 2) With correlation (Figure 3) 

min mean max st.dev min mean max st.dev 

1 Low Low -1793 -923 -34 405 -1796 -1412 -1020 161 

2 Low Realistic -1343 -461 387 410 -1358 -964 -581 169 

3 Low Fantastic -922 379 1689 541 -933 -104 717 391 

4 High Low -395 438 1300 406 -1428 -1046 -656 160 

5 High Realistic 23 860 1735 401 -985 -614 -221 162 

6 High Fantastic 429 1744 3063 545 -562 263 1094 392 
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By employing the SD approach, the decomposition high-

lights that if carbon prices are influenced by a CCS subsidy, 

then CCS investments are unprofitable except under the situa-

tion of an extremely favourable market price. The implication 

of this outcome is that the extra subsidy would result in signif-

icant sunk investments that, if built, would never operate be-

cause the carbon price would be too low to justify the loss in 

power production due to carbon capture. Consequently, the 

extra subsidy would essentially waste publicly-funded invest-

ments with no corresponding emission reduction. Moreover, 

the results also imply that a CCS subsidy for coal-fired power 

production directly undermines the carbon market and its use-

fulness for the other 27% of emission sources (i.e., the non-coal 

power), thereby stymying further emission reduction. These 

findings would seem to correspond congruently to the analo-

gous observations that occur with global carbon trading, in 

which massive renewable energy support schemes have effec-

tively driven the traded carbon price to zero. 

4. Conclusions 

Environmental planning is often a very complex endeav-

our that can be heavily influenced by numerous uncertain is-

sues and unquantified factors. These uncertain and inexact di-

mensions force decision-makers to incorporate many sources 

of stochastic uncertainty into their decision processes. Any an-

cillary methods used to support the decision formulation pro-

cess must include all of these stochastic components while be-

ing flexible enough to encapsulate the impacts from the differ-

ent uncertain elements. One approach frequently used in envi-

ronmental planning to incorporate stochastic uncertainties is 

Monte Carlo simulation. In this paper, a Monte Carlo simula-

tion procedure was presented that showed how simulation de-

composition could be used to efficiently partition sources of 

uncertainty into distinct components that permitted the simul-

taneous influence of multi-variable combinations of several in-

put variables onto the output distributions to be effectively vi-

sualized.  

The efficacy of an SD approach was illustrated using a car-

bon capture and storage case from China. The study demon-

strated how much the profitability of CCS investments would 

be affected when the carbon price depends upon an additional 

subsidy. An investment model and Monte Carlo simulation 

were employed to illustrate the cases of (i) with and (ii) without 

a subsidy dependence. To visualize the overall impact from 

combinations of input variables, the final distribution of the 

NPVs was decomposed into different scenarios of subsidy and 

price levels, so that the subsidy dependence effect could be-

come readily observable. 

In its stochastic evaluation capacity, SD was shown to be 

able to efficiently partition the Monte Carlo simulation output 

distribution into components attributable to specific scenarios 

of multi-variable input combinations. Unlike other methods, 

SD permits the simultaneous visualization and projection of 

these combined multi-variable stochastic uncertainties directly 

onto the generation of the overall output distribution. The SD 

method is generally usable and can be utilized independent of 

the simulation context. Since SD techniques can be adapted 

into simulation models of a wide variety of problem types, the 

practicality of this multi-variable partitioning approach can 

clearly be extended into many different types of environmental, 

operational, and strategic planning applications containing sig-

nificant sources of uncertainty. The efficacy of extending SD 

into a variety of environmental planning situations will be ex-

plored in future research. 
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