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ABSTRACT. Temperature is one of the most important parameters in climate modeling, as it has significant impacts on varieus geophy
sicalprocesses such as evaporation and precipitation. Applying multiple climate models for prediction generally outperfoero$ the us
individual climate models, and neural networks perform well at capturing nonlinear relationships, which can provideatvlerrepie

rature projections. In this study, three neural network algorithms, including-lelyéti Perceptron (MLP), Timkagged Feedorward

Neural Networks (TLFN) and Nonlinear AuRegressive Networks with exogenous irgfi#ARX), were used to devgbodatadriven

models for predicting daily mearearsurface temperature based on North American Coordinated Regional Downscaling Experiment
(NA-CORDEX) outputA case study of Big Trout Lake in Ontario, Canada was carried out to demonstrate the appécationevatu

ate the performance of the proposed neural network based models. The results showed that MLP, TLFN, and NARX weltform
generating accurate daihearsurface temperaturgredictions withthe coefficient of determination fRvaluesabove 0.84. The three
neural network based models had similar performance with no significant difference in terms of roajuaeserr®r and R Neural
network based climate prediction models outperformed each of the individual regional climateanddsserated smoethpredict

tions with less fluctuation. This study provides a technical basis for genereligigie predictions of daily temperature using neural
networks based model.
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1. Introduction crease in forecast errors with increasing forecast length (Ku
o ) maret al., 2012). Using statistical methods to garstcessnul-
Temperature changes have significant impacts on naturafiple RCMs would help to better generate predictions with

processes and human actes{(Karl et al., 2009), for instance,  pigher accuracy than an individual RCM (Palmer et al., 2005;
biological changes (Parmesan and Yohe, 2003) and construg s fus and Bernhofer, 2014). Samouly (2018) applied mean
tion sensibility (Xia et al., 2012). Thus, predicting temperature 5,4 median values of mukliiodel ensembles for monthly tem
precisely is of vital importance. Multiple climate models, such perature predictions, which ived better prediction perfor
as Global Climate Model (GCM) and Regional Climate Model ance than using a single RCM. However, as each model ge
(RCM), have been developed and can be applied to temperatuigsates a different range of predictions and errors, the mean
simulationsand predictions, which provide support for climate \,5,e calculated by allocating the same weight to each RCM

impact analysis (Thomson et al., 2006; Li et al., 2016; Wagnermay not be enough to fully take advantage adteprediction
etal., 2017). These models were developed by different nstitu 5 qel.

tions and their temperature predictions are not always consis
tent with oneanother. Although these models have errors in k A ’
certainprocesses (e.g., cloud formation), they can provide plau ful than the regressiebased techniques, have been widely ap
sible estimations for future variations in climate (Huo and Li, Pliéd in climate prediction because of their high potential for
2012; Ragone et al., 2015). complex, nonlinear and tirearying inputoutput mapping
(Von Storch et al., 2000). For instance, ANNs have been widely

Applying dynamic downscaling to drive RCM is computa o o . g
. . . applied in statistical downscaling for temperature and precipi
tionally costly and time&onsuming (Spak et al., 2007). Mere ; - : : N

L - ._tation prediction (Wilby and Wigley, 1997; Wilby et al., 1998).
over, the uncertainties in the modeling system lead to an in . . . .
Previous studies suggest that using compldsed learnig

algorithms, such as ANNs, to develop accurate predictior mod
els can profoundly reduce the lotegm dependency (Siegel
mann, 1997; Sfetsos, 2000; Shen and Chang, 2013; Caswell,
ISSN: 1726:2135print/16848799 online N 2014). Moreover, current and future temperatures have a close
© 2019 ISEIS All rights reserved. ddi0.3808/jeil.201900012 connection wWh the temperatures of previous days_ |ncerp0

Artificial neural networks (ANN), which are more power
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rating both concurrent and antecedent predictor values as inputonlinear activation functiof{.), is gplied tozto get the out
could improve the accuracy of temperature prediction (Couli put a of the neuron (Equation (2)). The network repeats the
baly et al., 2005). Various types of neural networks have-an insame process to the hidden layer (Equations (3) and (4)). Rec
ternal memory stretures that can store information about past tified linear unit (ReLU), conventional sigmoids function; hy
variables. Timdagged feedorward networks (TLFN) and perbolic tangent function, and logistiaittion are examples of
recurrent neural networks (RNNare the two major groups of commonlyused activation function¥he ultimate goal of train
dynamic neural networks that are commonly used in time seriegng a MLP is to minimize the cost function (Equation (5)),
analysis (Coulibaly et al., 2Q9 Dibike and Coulibaly, 2006). which measurethe errors between observations goedic

A TLFN simply replaces the neurons in the input layer of ations for training dataA backpropagation algotitm is used to
Multi-layer perception (MLP) with a memory structure. It is find the minimum cost function using the chain rule of di
less complex than tHRNNsand has similar capability for pro  fferentiation to calculate the partial derivative or gradient of the
cessing temporal patterns (Dibike et 8099). TLFN is an effi cost corresponding to the weigt{ghang et al., 2018 Back
cient method for downscaling both daily precipitation as well propagation calculates the erdgrivative for the wight of
asdailymaximum and minimum teperature series (Coulibaly each neuron to minimize the cost function:

et al., 2005). The Nonlinear AuRegressive Networks with

exogenous inpst(NARX) model is a dynamic networlhat n

has been widely used for time series prediction (Dhussa et al.Z; =a W; X "'l}’ (1)
2014). It can learn the behavior of a system in an effeataye i

It also convergemuch faster and generalizes better than other

networks (Lin et al., 1996; Coruét al., 2014). It has beende & = f(Z) (2)

monstrated that NARX is capable of capturing the dynamics of

nonlinear complex systems (Diaconescu, 2008; Chan et al., m

2015). Moreover, NARX performs favorably on letegm de zo=a Wa 3)
J

pendencies (Rahimi et al., 2018). Thus, NARXasticularly
useful for time series modeling.

Considering that neural networks perform well at grasping Y« = f(z) 4
the nonlinear relationships between predictors and predictands,
MLP, TLFN, and NARX modelsvill be applied to simulate 1 )
daily meannearsurfacetemperatire and generate predictions Cy ‘E(yk -t) ®)
basing on multiple RCMsThe goal of this study is to develop,
validate and evaluate the performance of neural networks for
daily meamearsurface prediction with multiple RCMs the —
provinceof Ontario, Canada. This entailse following:(1) cok (27
lecting North American Coordinated Regional Downscaling
Experiment (NACORDEX) data to provide inputs for the pro  uC
posed neural network based modgl8} developing MLP, W =Y & @)
TLFN, and NARX modedto generate daily mearearsurface :
temperature;(3) evaluatingthe performance of MLP, TLFN

and NARXusing a case study dieBig Trout Lake statioin ~ Wherexis theiinput, & is the output of th¢" neuronyw; and
Ontario. Canada. wik represent the weight @f neuron in the hidden layer akl

neuron in the output layer, respectively; @ni the biasC
refers to the cost of the cost functignijs the predicted output
2. Methodology andty is the observed true value. The erderivative for the
2.1. Multi-layer Perceptron (MLP) weightw,-_k on the connec_tion from uniitis a (uC_)/( B) Thg
error-derivative for thaveightw; on the connection from urjit
MLP is a widelyused ANN model which usually consists s x (uC) / ( B) (Equation (6)) (LeCun et al., 2015). Equation

of an input layer, oner more hidden layers, and an outputlay (7) shows the partial derivative of the cost function correspond
er (Figure 1). Each layer includes some neurons (Jiang et aling and activation function.

2018). The numbers of neurons in the input and output layers

are determined by the numbers of elements in the external input i

array and output array te network, respectively (Osman and 2-2. Time-lagged FeeeFForward Neural Network (TLFN)
Abdellatif, 2016). The number of neurons in the hidden layers TLFN is formulated based on MLP and replatiee neu

are determined by the trial and error (Hammerstorm, 1993) forrons in the input layer with a memory structure, which is some
the best performing model. Different layers are connected withtimes called a tagelayline, as shown in Figure oulibaly
weights and biases. The connens between the layers allow et al., 2005). TLFN uses dekiime processing elements (§E
information flow forward towards the output layer. The neuron by holding pat sample®f the input signalThe output/(n) of
network first computes the weighted sum of the inpjtand TLFN with one hidden layer is shown as Equation (8) (Cou
feedsz into the neurons in the hidden layer (Equation (1)). A libaly, 2004):

C_ £, W ©)
M
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V)= 1@ Wy () +b)
- ®)
=f{aw i amxn-) B b

wheremi is the size of the hidden layerjs the time stepy; is

the weight vector for the connection between the output laye

and the hidden layeandw; is the weight matrix for the cen
nection between the hidden layer and the input ldyandf;

are the active functions at the output layer and hidden layer

respectivelyb, andb; are the bias terms. The input pattegm)
has multiple inputs of size(Equation (9)) an&(n) is the cor
bined input atime stem, whose delay line with memory depth
k (Equation (10))x(n-1) is obtained by delaying(n) by one
sample:

x(n) = (n), %0, ..., %( ) 9)

X(M=[ XN, Xn-1), »xn Kk 1} (10)

Hidden
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Input
Layer
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Figure 1. Structure of MLP with one input layer, one hidden
layer(s), and one output layer.
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Figure 2. Structure of TLFN with one input layer, one hidden

12

layer, and a delalne with memory depth d. (z* is an opera
tor that delays the input by one sample). (Dibike and Coulibaly,
2006).

2.3. Nonlinear Auto-Regressive Networks with Exogenous
Input s (NARX)

Networks that use feedback connections, enabtifay-

'mation flow laterally or backwards within the network, are

calledRNNs NARX is a special type of RNN that creates a
relationshipbetweenthe current value of a time seriasd the
predicted past values of the exogenous series, and the outputs
are Bd back to the input by a delay line (Haykin, 1998). As
shown in Figure 3, the structure of the NARX model is similar

to the traditional multiayered perceptron (MLP) model. The
NARX model can be expressed as in Equation (lib) €t al.,
1996):

R ECTRTRIN "BV O ST 99 (11)

wherex; andy: represent the input and output of the network at
time t, andf(.) is a nonlinear function, which can be approxi
mated by a standard MLP netwodk anddy are the time lags
for the input and output seriesiffLet al., 1998).

Input Hidden Output
Layer Layer Layer

X

Xi1

Xi-dx

Yt—dy

Yi2

Yi1

Figure 3. Structure of NARX network with one input layer, one
hidden layer, and one output layer* lenotes delay for one
time step).

3. Study Area and Data Collection

Big Trout Lake in Northern Ontario, Canada was chosen
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to testthe performance of the proposed methods. According tostatistical agreement between observed and simulated mean
Canadatdts Changi ng ClI etaha2018), R ¢epperaturand @cteBssés®ed usihgan square error (MSE).
Northern Canada has warmed and will continue to warm at  The structure of the networks used in the study consisted
even more than double the global rate. Between 1948 and 2016+ one input layer, one output layer, and one hidden layer. MLP
the observed changes (G annual temperature in Northern yas trained with the number of neurons ranging from 5 to 20
Ontariowere higher than in SoutheffheBig Trout Lake sta  and the MLP with 12 neurons was selected as it generated the
tion (53.83°N, 89.87°W) is located in the far northwestern pest performing network. Both TLFN and NARX were trained
region of Ontario and south of Hudson Bay. It is classified asith lag time (ime delay)rangng from 1 to 3 days and the
having a subarctic climate, whichdudes yearound precipi  nymber of neurons ranging from 5 to 20. The TLFN model with
tation, short and cool summers, and long and cold dry winters; neyrons and a time lag of 3 days and NARX with 15 neurons

(Tam et al., 2018), resulting in high annwatiation in tempe  ang 3 time lag of 3 days were selected as they generated the
rature The average teperature and yearly precipitation of Big  pest performing network.

Trout Lake are2.7 € and 609.1 mmThe average nmahly
temperature ranges frof23.7 to 16.2 €. The minimum and
maximumrecorded temperatuie the Big Trout Lakestation
were-47.8 € (January 1951) and 35.6 € (July 1955). The
highest historical daily precipitation occurred in August3,95
reaching 84.1 mmConsidering the region's high variation in
temperature and climate sensitivitlye Big Trout Lake station
was chosen for evaluating the performance of neural networks 5. Results and Discussion
methods.

Performance of three neural network models was evalu
ated by comparing predicted results with observed temperature
values. Statisticatriterions such as root mean square error
(RMSE) and coefficient of detamination (), were used for
performance evaluation.

. ) . 5.1. Neural Networks Performance
The study used daily mean temperature simulation data5 1.1. MLP Performance

obtaned from six RCM and observation data of the Big Trout ) ] .
Lake station from 1979 to 1989. The six REAe each driven The timeseries plot and the scatter plot of the observation
by different GCM models. They are 1) CanRCM4, CRCM5, @nd prediction of daily mean temperature obtained by MLP are
and RCA4 driven by CanESM2; 2) HIRHAMS and RCA4-dri shown in Figurs 4 and 5, re_spectlvely. The tinseries plot )
ven by EGEARTH. 3) CRCMS5 driverby MPFESM-LR. The shows that MLP could predict the seasonal pat_tern of daily
grid resolution for each RCM is 0.44°x 0.44° The simulated Meannearsurface temperatur&MSE and Rof testing were
daily mean temperature data were downloaded féwCOR  6-537 € and 0.843, respectivelyhe snall RMSE and high R
DEX archive (Meams et al., 2017), a branch of the Interna Values indicatehat MLP performed well and could predict
tional CORDEX Initiative (Giorget al, 2009; LuasPicher et meannear-surface temperaturgith relatively high accuracy.
al., 2012). The akerved temperature data of the Big Trout Lake In addition, while the observed temperature of all datasets
were downrloaded from the Digital Archive of Canadian varied from-38.9 to 26.1 €, MLP could generate predictions
Climatological Data provided by Environment and Climate ranging from-25.6 to 17.5 €. For observations ranging frem
Change Canada (ECCC). 30to-16 €, MLP tended to give prediction values of around
20 €. For observations ranging from 12 to 26.1 €, MLP gen
erated prediction ranging from 10 to 17 €, which implies that
MLP could not capture the extreme values precisely. This may
The neurinetwork models in this study were developed P€ due to the tendency of malinetworks sacrificing ariance
with net functions in MATLAB (version R2014b). The Leven 0 gain high RMSE.
bergMarquardt backpropagation algorithm was applied for
training the models, as it is one of the fastest fmokagation
algorithmdor feedforwarchetworks(Hagan and Menhaj, 1994,
Lee et al., 2016). 0

Inputs to the neural networks were the simulated daily 10 |
mean temperature of six RGMvhile the output was daily
meannearsurface temperatui@served at the Big Trout Lake
station. RCM outputs at the cladegrid point to the Big Trout
Lake station (53.76°N, 89.84°W) were used as inputs for the
pre-diction models. The first 70% of the dataset (January 1979
~ September 1986) were used for training the modéisn, -30 f
the following 15% of the dataset (Septemh986 ~ May 1988)

. . . pe . ’40 C 1 1 1 1 1 1
were used to validate those models, which verified the -appli 1980 1982 1984 1986 1988 1990
cability of the model. The last 15% of the dataset (May 1988 ~ Time
December 1989) were used for testimfpich assessetie ge
neralization ability of the model. Ttdifferrentparameters of  Figure 4. Time series plot of observed and predicted daily-near
each model were adjusted during calibration to obtain the bessurface temperature values obtained by MLP with 12 neurons.

4. Neural Network Design and Training

—— observation ==+ prediction

Tmean (°C)
U 1
[N
S o
T T
e
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(a) training (b) validation (c) testing
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Figure 5. Scatter plots of observed and predicted dailysesiace temperature values obtained by MLP with 12 neurons

Table 1.Comparison of Performance between RCiid Neural Networks

RMSE(C) R?
GCM RCM training validation testing training validation testing
CanESM2 CRCM5 8.682 8.800 8.861 0.717 0.638 0.728
CanRCM4 9.402 9.124 9.239 0.665 0.617 0.691
RCA4 9.029 8.709 9.008 0.690 0.653 0.708
EC-EARTH HIRHAMS 8.349 8.411 8.547 0.695 0.659 0.722
RCA4 9.304 10.475 8.676 0.667 0.565 0.707
MPI-ESM-LR CRCM5 8.321 9.406 8.253 0.705 0.612 0.732
Neural Networks MLP 6.282 6.998 6.537 0.829 0.753 0.843
TLFN 6.244 6.797 6.363 0.832 0.766 0.854
NARX 5.966 6.882 6.345 0.849 0.761 0.856
5.1.2. TLFN Performance peratures shown in Figure 9, the points are scattered more den

Figures 6 and7 show the statistical performance and time sely along the diagonal line than MLP and TLFN, indicating
series plot of TLFN with a time lag of 3 days and 5 neurons.that the error of prediction and observation values were smalle
TLFN had similar performance with MLP and had smal im than that of MLP and TLFN. However, the accuracNéilRX
provement, with RMSHecreased to 6.363 € and?Ricreased for prediction extreme teperature values was similar to MLP
to 0.854. This indicates that TLFN is an efficient model forcap and TLFN.
turing the changing pattern and predicting daily maear
surface temperatureCcompared with the MLP model, TLFN —— observation ~ —=—- prediction

generated predictions scattered mdosely with observations
and had a smaller range of temperature prediction 2819 20k
to 16.5 €. For observations ranging fro30 to-20 €, the
overestimated prediction errors of TLFN were smaller than 10 -
MLP. Similar to MLP, TLFN did not capture thetexme values 5 ol
well. e
@
e -0
5.1.3. NARX Performance T ol
Figures 8 and 9 show that NARX performs well at gene
rating mean temperature prediction and could accuratety pre “0F
dict the changes of daily mean nearface temperaturewith a a0k ! . ' . .
low RMSE of 6.345 € and high Rof 0.856. This suggests that 1980 1982 1984 1986 1988 1990
NARX performshe most effectively among the thregmedic Time

ting daily mean neasurface temperature. The prediction range

generated by NARX was fron25.4 to 15.7 €; the maximum  Figure 6. Time series plot of observed and predicted daily-near
value was lower than the predictions generdtgdVILP and surface temperature values obtained by TLFN with 5 neurons
TLFN. From the scatter plot of observed and predicted tem and a time lag of 3 days.
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(a) training (b) validation (c) testing
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Figure 7. Scatter plots of observed and predicted daily 1seaface temperature values obtained by TLFN with 5 neurons and a
time lag of 3 days

—— observation  —=- prediction and underestimated the high temperature in winter. CRCM5
driven by MPYESM-LR performed well with low error in win

20 F ter. All RCMs performed better in the summer months than in
the winter months, with observatiovalues falling between the
maximum and minimum prediction of 6 RGWHowever, the

ok changing paern of neural network based models was smoother
than RCM with small fluctuation. As neural network based
models generate predictions with smooth variatiortepat
20k they tend to have smaller RMSE and highétHan RCMs.

Tmean (°C)

5.3. Comparison of Performance between MLP, TLFN, and
_40 C 1 1 1 1 1 1 NARX

1980 1982 19? 1986 1988 1990 The RMSE for all three methods ranged from 6.345 to
me 6.537 € and R were above 0.84, indicating ththethree neu
Figure 8. Time serieplot of observed and predicted daily near '@l nétworks couldprovide reliable temperature forata for
surface temperature values obtained by NARX with 15 neurondi9 Trout Lake. The ndmear transfer function associated with
and a time lag of 3 days. egch hldde_n and out_put n_ode qllowsle to_ approxmat_e
highly norlinear relationships without a prior assumption,
which leads to relatively high agracy in prediction.

In terms of the structure of neural networks, TLFN and
NARX were built based on the structure of MLP. These two
methods incorporate antecedent predictor values as input to
improve forecasting. Although all three methods had similar
performance with no significardifferences in terms of RMSE
and R, TLFN and NARXhad a smaller error in prediction than

LP. Thus, incorporating antecedent predictor values as input

ould slightly improve the performance of the neural network.
When comparé with TLFN, NARX not only incorporates pre
vious RCM data into the network but also considers previously

Figure 10 shows the time series plot of six RCahd  predicted valuesHowever, the time required to train the
neural networks of winter (Januaand February) and sum  NARX model and generate predictions was much longer than
mer (July and August) 1989 predictions. The observatien va that of TLFN. As TLFN has similacapability to process and
lues fall within the range of the RGiMwhile the neural net  predict temporapatterns as RNN while having a less complex
workstended to predict temperatures 20 and 15 € for win structure being less computationally demanding, TLFN 4is re
terand summer, respectively, with very little variance and-fluc commended for the prediction of temperature values in areas
tuation. For winter, three RC8/driven by CarESM2 pre  \where the climate is similar to the study arehisTinding is
dicted relatively well with observations aligning closely to the consistent with the results from previous studies on using

RCMspredicted values. RCA4 driven by EEARTH perform neural networks for temperature predictions (Coulibaly et al.,
ed the worst wiuh tended to overestimate the low temperature 2001; Coulibaly et al., 2005).

5.2. Comparison between RCM and Neural Networks

Table 1 shows thstatisticalperformance of six RCkand
3 neural network magls for training, validationand teshg.
The RMSE of six models ranged from 8.253 to 9.239 € and
the R ranged from 0.691 to 0.732. Among the six models,
CRCMS5 derived by MPI_ESM_LR performed the best while
CanRCM4 derived by CanESM2 had the lowestaRd the
highest RMSE. Neural network based models outperforme
each individual RCM mdel, with RMSE decreased bypap-
ximately 2 € and R increased from 0.7 to 0.85.
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(a) training (b) validation (c) testing
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Figure 9. Scatter plot of observed and predicted datarsurface temperature values obtained by NARX with 15 neurons and a
time lag of 3 days

Figure 10.Time series plot of 6 RCMs and neural networks of (a ~ c¢) winter and (d ~ f) summer in 1989.
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