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ABSTRACT. Bird population census is an important indicator in conservation programs. However, the process of detecting and identi- 

fying particular species is time-consuming and challenging, often being conducted in remote locations. In this scenario, the development 

of automated acoustic systems for bird monitoring is crucial. In this study, we propose a simple but effective 3-step approach for identi- 

fying the Amazona rhodocorytha, an endangered Brazilian parrot, among 4 other species belonging to the same family. This approach 

consists of a pre-processing step, a feature extraction step using the MFCC algorithm and a classification step by employing an Artificial 

Neural Network. Results show that the proposed approach is both suitable and robust for this type of application, achieving excellent 

classification results of up to 98% accuracy. 
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1. Introduction 

As the impact of anthropogenic activities on the environ-

ment continue to grow, so does scientific interest in detecting 

and measuring trends in nature conservation. Intensive research 

and huge amounts of investments in several fields have been 

applied in order to mitigate, study, and gauge further changes 

(Rosenzweig and Parry, 2004; Edenhofer, 2015; Simmonds et al., 

2007; Stephens et al., 2016). As shown by several studies (Kos-

kimies, 1988; Gregory, 2009; Stephens et al., 2016), changes in 

bird population size are one indication of the impact of human 

activity in the environment.  

Several animal species are very dependent on sound for 

their activities. Among others, one can cite bats (Moss and Schnitz-

ler, 1989), birds (Johnson et al., 2002; Selin et al., 2006; Brandes, 

2008; Dawson et al., 2009; Lopes et al., 2011), whales (Payne 

et al., 1971) and dolphins (Au, 2012). Birds, particularly, can of-

ten be characterized and identified by their high-energy and di-

verse vocalizations. Hence, by recording and analyzing bird acous-

tic signals (Brandes, 2008; Dawson and Efford, 2009; Lopes et 

al., 2011) in predetermined areas, the identification of species and 

their population sizes can be evaluated. However, apart from 

the difficulty of determining population size, the identification 

of species that are endemic to a certain region faces several fur-

ther challenges. 

Identifying a specific bird song among a collection of oth-

er vocalizations and acoustic signals is a very difficult task, even  
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for a trained human operator. Furthermore, if the population den-

sity is low, as in an endangered species case, detecting its pre- 

sence is a labor-intensive and time-consuming process (Bardeli 

et al., 2010; Sebastián-González, 2015). In addition, these pro-

cesses often occur in remote areas where supporting resources 

are limited, further complicating the process. 

Development of autonomous low-cost recorder units, cap-

able of passive acoustic monitoring (PAM), has aided research-

ers by providing an effective way to monitor remote areas (John-

son et al., 2002; Blumstein, 2011). These recorders allow the es-

tablishment of large monitoring areas for long periods of time, 

without the need of constant human interaction. Thus, up to 

years of recording uninterrupted acoustic data can be collected. 

However, the massive amount of data collected this way makes 

it nearly impossible to study and analyze these recordings (Se-

bastián-González, 2015) effectively and reliably without the aid 

of artificial intelligence procedures. 

Apart from the volume of data to be analyzed, the main re-

curring challenge, reported by most studies in the field of bio-

acoustics (Johnson, 2002; Selin et al., 2006; Brandes, 2008; 

Jaffar et al., 2013), also includes the chaotic nature of the data 

and the access to remote locations, where resources and man-

power are scarce. Methodologies of study often focus on a so-

lution that is not only both robust and flexible, but also simple 

to be implemented in these kinds of scenarios. 

Therefore, the incorporation of automated methods to pro-

cess, classify and extract valuable information from huge col-

lections of acoustic datasets becomes necessary. Along the past 

decades, enormous progress in the field of pattern recognition, 

signal processing and machine learning have enabled efficient 

analysis of big datasets with methods that are widely used in 
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both the scientific sector and the industry (Cortes and Vapnik, 

1995; Yegnanarayana, 2009). Particularly, for animal detection 

and identification, machine-learning models have been trained 

in order to detect and identify specific species such as amphi-

bians (Jaffar et al., 2013), birds (Johnson, 2002; Selin, 2006; 

Brandes, 2008; Lopes et al., 2011) and whales (Pace, 2008). 

In this context of big data, machine learning models can be 

employed alongside autonomous recording units, creating fully 

automated systems. These systems are able to support resear-

chers and Non-Governmental Organizations (NGOs) in the de-

tection and identification of different animal species and popu-

lation census.  

For example, concerning birds, the study presents an over-

view of automated sound recordings (Brandes, 2008). The au-

thors expose a list of challenges and motivations to perform 

bird survey analysis, as well as a description of several hard-

ware designs and concepts in order to conduct PAM. This study 

includes a discussion about possible microphones arrays set-

tings, timers for scheduling purposes, embedded systems, and 

even smart phones. Lastly, an analysis of automated methods 

for processing the collected recordings is presented. The analy-

sis also mentions a list of the most used types of features ex-

tracted to conduct a classification task, as well as the classifiers 

used along with it, such as Multilayer Perceptron and Bayesian 

classifiers.  

In contrast, Jaffar et al. (2013) pursue the identification of 

frog vocalization by applying an automatic syllable segmenta-

tion method along with the k-nearest neighbors (kNN) classi-

fier. The methodology can be described in 4 steps. In the first 

step, the input acoustic signal is segmented by the proposed me-

thod into a set of syllables. In the next step, each syllable is sub- 

jected to pre-emphasizing, framing and windowing. Then, fea- 

tures are extracted by the Mel-Frequency Cepstral Coefficients 

(MFCC) and Linear Predictive Coding (LPC) algorithms. Final- 

ly, in the last step a model is trained with the kNN classifier. 

Johnson et al. (2002) discusses an approach for monitoring 

nocturnal avian vocalization, such as for owls. While diurnal 

survey already presents its series of challenges, the reduced vis-

ibility makes it even harder for manual survey. Therefore, the 

authors discuss a technique for optimizing both time and re-

sources for nocturnal monitoring, while also presenting chal-

lenges that still need to be taken into account, such as hardware 

failure in a remote location. 

In another study, Pace (2008) compare feature extraction 

methods such as MFCC, LPC and real cepstrum coefficients, 

for humpback whale song classification. These feature extraction 

methods are then combined with a clustering algorithm, namely 

k-means clustering, and Artificial Neural Networks (ANN). 

The work presented by Lopes et al. (2011) focuses on the 

automatic identification of numerous species from the Southern 

Atlantic Brazilian Coast. The recordings used in this study 

were collected from two Datasets and passed through a series 

of preprocessing techniques to enhance the quality of the re-

cordings. Next, the authors employ a feature extraction step us-

ing the MARSYAS framework and compare different classi-

fication techniques. These are the kNN, MLP, Naïve Bayes, and 

SVM. Obtained results showed a clear advantage of the MLP 

and SVM methods for the proposed scenario. 

In its turn, Selin et al. (2006) describes an approach using 

wavelets decomposition as the feature extraction method. As 

with many of the other methods already discussed, a first step 

of pre-processing, consisting of noise reduction and segmenta-

tion, was carried out. Then, the proposed wavelet approach of 

feature extraction was conducted, where four features were ex-

tracted and fed to two types of Neural Networks, the unsuper-

vised self-organizing map (SOM) and the MLP. The results 

show that the MLP achieved up to 96% accuracy while the 

SOM 78%. 

Priyadarshani et al. (2018) presents a literature review of 

the state-of-the-art in birdsong recognizers, summarizing and 

discussing currently available methods, as well as available 

software. Furthermore, the authors discuss and review studies 

in all stages of a birdsong classifier such as signal segmenta-

tion, call detection, noise reduction methods, feature extraction 

steps and classification methods and software. Additionally, 

performance measures for all methods are given in the form of 

accuracy, precision, recall, and F-score. 

A fully automated real-time bird sound recognition system 

is proposed by Kücụ̈ktopcu et al. (2019) using a low-cost, low-

level microcontroller capable of simultaneously on-board re-

cording and signal processing. Due to the limited processing 

power and memory of the hardware, the most intensive pro-

cessing tasks such as training and cross-validating a classifica-

tion algorithm are perfomed off-line, that is, apart from the ac-

tual system implementation. The system implementation has 6 

stages, comprised of sampling and recording; noise removal; 

detection of sound parts in segments; feature extraction; classi-

fication; and storage of the classification results. Results achi-

eved up to 83% accuracy with the minimum distance classifier, 

however, the authors also experimented off-line with multilay-

er neural networks and convolutional neural networks (CNN) 

with up to 93% and 96% accuracy respectively. It is worth no-

ting that recent released libraries by ARM allows the use of 

these more complex algorithms in some of their microcontrol-

lers. 

To sum up, across the literature, in what concerns auto-

mated bird recognition, it is possible to identify two major chal-

lenges that are still relevant today: the difficulty to access re-

mote areas, in order to conduct the necessary survey, and the 

huge datasets to analyze and classify. These challenges are usu-

ally overcome by using a combination of remote sensors, to au-

tomatically collect vocalizations, and an automatic classifica-

tion model to detect and classify the collected data. In this con-

text, several types of feature extraction methods and classifica-

tion methods are described. A clear pattern that can be observed 

is the use of MFCC as a feature extraction method and the use 

of a couple of classification methods, particularly the MLP. 

The constant use of this method is due to the excellent results 

it provides, often better than other methods, as well as to its 

simple implementation in a multitude of different scenarios. 

Finally, adding another contribution to the subject of envi-

ronment conservation, the present work proposes the use of a 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Priyadarshani%2C+Nirosha
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simple, but effective machine learning method, in order to iden-

tify the Amazona rhodocorytha, an endangered species en-

demic of Brazil. To our knowledge, there are very few studies 

tackling automatic identification of endangered Brazilian bird 

species, and no papers concerning the Psittacidea family spe-

cifically, of which several endangered sub-species exist. This 

work provides a first look into this identification task. Although 

the present study focuses on a specific Brazilian bird, the pro-

posed methodology could be applied in recognizing other spe-

cies. Additionally, we collected and worked on labeled data 

from 2 public avian datasets, the international Xeno-canto and 

Brazilian Wikiaves datasets. To our knowledge, no work of this 

context exists for the Wikiaves dataset, and few for the Xeno-

canto collection (Vellinga, 2015). 

The red-browed parrot (Amazona rhodocorytha), from the 

Psittacidae family, is a species of parrot that can be found in 

the Atlantic Forest in Brazil. This species is a prime example 

where anthropogenic activity is affecting its population, since 

less than 1% of its habitat still remains due to deforestation 

(BirdLife International, 2017). Nowadays, even though the par-

rot’s remaining habitats are conservation units, this offers little 

protection from illegal poaching. Indeed, with less than 10,000 

estimated individuals remaining, the Amazona rhodocorytha is 

classified as “endangered” by the IUCN (International Union 

for Conservation of Nature) in its Red List of Threatened Spe-

cies (BirdLife International, 2017). Besides the difficulties al-

ready listed, due to being present in an ecosystem with very 

high biodiversity, recordings will often be subjected to a high 

volume of environmental noise present in the forest. Further-

more, this type of bird often shares the same ecosystem as oth-

ers from the same family, further impeding detection and iden-

tification due to their similar vocalizations. 

The present study proposes the utilization of a Neural Net-

work for the detection and identification of the Amazona rho-

docorytha under a real-world soundscape scenario. This will be 

tackled in combination with a pre-processing step composed of 

signal segmentation, filtering and feature extraction with the 

Mel-Frequency Cepstrum Coefficients (MFCC). Additionally, 

4 other bird species from the Psittacidae family are considered 

in this study as to verify the methods capability to handle the 

difficult task described in the last paragraph.   

In summary, this paper describes a method for the detec-

tion and classification of an endangered Brazilian bird species. 

This method is also capable of being easily implemented in sys-

tems that are deployed in remote locations. Furthermore, this 

paper aids researchers and NGOs in handling the difficult task 

of differentiating a particular species among several other sim-

ilar acoustic vocalizations.  

2. Methodology 

In this section, we describe the methodology followed in 

the present work. Section 2.1 gives an overview of the pro- 

posed methodology. Section 2.2 presents the pre-processing 

steps conducted before a feature extraction step in section 2.3 

and finally, Section 2.4 describes the Neural Network Multi- 

layer Perceptron used to train the model. 

 

2.1. Overview 

Figure 1 illustrates the overall architecture of the proposed 

approach. First, a 2-step pre-processing phase is carried out by 

segmenting the recordings and applying a band-pass filter. 

Next, a feature extraction step is performed aiming at capturing 

relevant information to the classification problem. Finally, the 

resulting data is fed to an Artificial Neural Network to train a 

classification model for the Amazona rhodocorytha. It is worth 

noting that the dataset used for these steps is described in Sec-

tion 4.1.  

 

2.2. Pre-Processing 

As shown in Figure 2, the collected recordings contain a 

wide array of acoustic events, some of which are not only not 

relevant to the problem in question, but may also yield undesir-

able results when training a classification algorithm. Therefore, 

we conducted a segmentation process to isolate and retrieve 

only the time periods where a probable acoustic event from one 

of the Psittacidae was present. This segmentation process was 

done in a supervised way, using the Audacity (Audacity, 1999 

~ 2018) software and spectrogram tool for signal visualization. 

With it, it was possible to recognize the Psittacidae patterns 

from noise, such as human speech, other animals’ vocalizations, 

or instrumentation handling. It is worth noting that, when there 

was over-lap of vocalization and noise, we selected only the 

cases where it was still possible to easily identify the desired 

signal.  

Another problem that is evident from the collected sam-

ples is constant background noise, such as cricket sounds shown 

in Figure 2. These types of noise are present in mostly all the 

recordings, often overlap with the desired signal, and are detri- 

mental to the classification process. Our proposed solution uses 

a Butterworth bandpass filter to emphasize only the frequencies 

that contain the Amazona rhodocorytha vocalizations. A band- 

pass filter can be defined as a filter that isolates the data in a 

certain frequency band of a time series (Christiano et al., 2003).  

In this work, the selected band, from 900 to 5000 Hz, was 

chosen after closely analyzing the Amazona rhodocorytha vo- 

calization pattern. Furthermore, this filter was applied to all 

segmented recordings, even the ones where a vocalization from 

another Psittacidae was recorded, since this paper focuses sole-

ly on the detection and identification of the Amazona rhodo-

corytha.  

 

2.3. MFCC Feature Extraction 

Choosing an appropriate feature to describe each signal is 

a defining step when building an intelligent acoustic model. 

The Mel-frequency cepstral coefficients is described as a ro-

bust and reliable method, suitable in applications where a lot of 

noise can be expected (Foote, 1997). Originally developed and 

used in speech and speaker recognition systems, extensive re- 

search has been conducted in a wide range of acoustic applica- 
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Figure 1. Amazona rhodocorytha identification methodology. 

 

tions, including animal vocalization classification (Johnson et 

al., 2002; Selin et al., 2006; Pace, 2008; Brandes, 2008; Jaffar 

et al., 2009, 2013; Lopes et al., 2011).  

In the present work, due to its flexibility, robustness and 

ability to be easily implemented in a remote environment, the 

MFCC feature extraction method was considered in building 

the feature vector that will feed the MLP. 

 

 
 

Figure 2. Spectrogram of Amazona rhodocorytha vocalization 

and an example of a selection. 

 

The Mel-frequency scale is used to represent the perceived 

pitch frequency in a non-linear way, which closely models the 

human auditory perception. It considers properties such as power 

spectrum and critical-band frequencies. Let fmel be the percei-

ved pitch, Mel frequency can be defined as follows: 

102595log (1 )
700

Hz
mel

f
f    (1) 

 

where fHz is the real linear frequency to be converted. 

The Mel frequency cepstral coefficients can be defined in 

a series of steps (Sigurdsson et al., 2006), as follows. Firstly, 

we compute the Discrete Fourier Transform (DFT) of every 

frame in the signal. The DFT can be defined as: 

 
2

1

0
( ) ( ) ( )

j nkN
N

n
X k W n x n e





  (2) 

 

where x(n) is the discrete-time signal with length N, k = 0, 1, 

…, N-1 corresponds to the frequency f(k) = kfs/N, fs, is the sam- 

pling frequency in Hertz (Hz), and w(n) is a time window (Han- 

ning in this work). 

Next, we compute the Mel filter bank, which is a series of 

overlapping triangular shaped bandpass filters, uniformly dis-

tributed on the Mel scale and spanning the entire signal band-

width. Usually, this is a set of 20 ~ 40 filters which produces 

an equal number of same length vectors. These vectors are most-

ly composed of zeros and are non-zero for the section of the 

spectrum each filter band comprises. Next, each filter output is 

calculated by multiplying each filter bank with its power spec-

trum and accumulating the results. This gives a number that re-

presents how much energy each filter bank contained. It is worth 

noting that the center frequency of each band n is fmel(n) and 

has max amplitude, starts at amplitude 0 at fmel(n - 1) and decays 

again to 0 at fmel(n + 1). 

The Mel filter bank can be written as: 
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and fc(m) is the center frequency. 

In the next step the logarithm X’ of each filter output is 

calculated, and the Discrete Cosine Transform (DCT): 

 

1

1
'( )cos( ( ) )

2

M

n

m

c X m n m
M





  (4) 

 
For n = 1, 2, …, M, where M is the number of filter banks. 

The resulting cn feature vectors are Mel frequency cepstral 

coefficients. This process results in a matrix for each input signal.  

As each sample signal may generate MFCC matrixes with 

different lengths, each resulting matrix was flattened into a vec-

tor and zero padded as to have the same length. The resulting 

matrix is the extracted MFCC features from every sample. 

Finally, before being fed to the Neural Network the train-

ing data is normalized, as to eliminate scale factors that might 

exist between variables of the data. This can be done by making 

all variables have similar weight. One possible formula to achi-

eve this is: 

 

- min( )

max( ) - min( )

i
i

x x
z

x x
  (5) 

 

where zi is the ith normalized data. 

 

2.4. Multilayer Perceptron 

There are several types of Artificial Neural Networks 

(ANN), and we chose the Multilayer Perceptron algorithm for 

its simplicity and usage in a wide range of applications. The MLP 

is a type of feedforward Neural Network (Gardner et al., 1998). 

The MLP consists of a series of interconnected neurons 

(often called nodes or units), that can be arranged in 3 layered 

structures, the Input Layer, one or more Hidden Layers, and an 

Output Layer as shown in Figure 3. Each unit is connected to 

every other unit of the adjacent layers by axons, composed of 

weights and output signals. Basically, this consists of the sum 

of all the input units multiplied by the weights and then modi-

fied by a sigmoid activation function expressed as (Gardner et 

al., 1998): 

 

 1 1 x

ia e   (6) 

 

where ai is the activation of unit i. 

As with other supervised methods, the MLP learns through 

training with a series of labeled data. In the training process, 

the MLP maps the input data to the output data by adjusting the 

weights of the axons. In this process, errors are determined as 

the difference between the target output and the obtained out-

put. Concretely, what the training process does is try to mini-

mize this error, by changing the value of the weights, through 

an optimization algorithm (such as gradient descent, LBFGS 

(Nocedal et al., 2006) and ADAM (Kingma et al., 2014)). 

 

 
 

Figure 3. Schematic representation of a Multilayer Perceptron. 

Each circle represents a unit in its respective layers, and x is the 

input vector. 

 

In this context, the most widely used algorithm that envel-

ops this training process is the backpropagation algorithm (Ru-

melhart et al., 1985). The backpropagation algorithm can be sum-

marized in a series of steps: 

 Initialize weights.  

 Feed the input vector. 

 Forward propagate the input vector through the Neural 

Network. 

 Calculate the error by comparing the target vector with the 

current output. 

 Back propagate the error through the Neural Network. 

 Apply the optimization algorithm to minimize error and 

adjust the weights. 

 Repeat from step 2. 

 A formal definition of the backpropagation algorithm can 

be found in Bishop, 1995. 

 Finally, with the MLP model trained, a new acoustic signal 

can be fed to the network, and it will be classified as per- 

taining to the class Amazona rhodocorytha or not.  

Furthermore, it is worth noting, that new acoustic signals 

should pass through the same pre-processing steps conducted 
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in the model generation. This is because the trained model works 

on the representation of the data given by its input and output 

vectors and the pre-processing steps are part of that representa-

tion.  

3. Results and Discussion 

This section presents the results obtained by the MLP clas- 

sifier. Section 3.1 describes the dataset used for the training and 

testing phase, Section 3.2 discusses the experimental protocol 

cases, and Section 3.3 presents study cases and the obtained re- 

sults. 

 

3.1. Datasets 

To emulate the chaotic nature of the data - that the model 

will be subjected to in a real-world scenario - we considered im-

perative the usage of unprocessed recordings taken in the field 

in different circumstances. Thus, the recordings have been 

taken by means of different microphones, different hardware, 

and different operators, thus having different quality and vary- 

ing degrees of noise. 

In this context, all the data was collected from the Wikiaves 

(2018) and Xeno-canto (2018) databases. Wikiaves is a com-

munity driven website for sharing information, photos and re- 

cordings of Brazilian birds. Similarly, Xenocanto is a website 

for sharing bird vocalizations from species around the world. 

Additionally, these databases provided us data in ideal settings, 

as all recordings were taken in different circumstances. Further-

more, it is worth noting that as there is a reasonable amount of 

redundancy between these datasets, we took the pre-caution of 

analyzing each recording to check for this issue. 

Besides the Amazona rhodocorytha, we selected record-

ings from 4 other birds of the same family, having similar vo-

calizations, sharing the same ecosystem of the Amazona rho-

docorytha. Table 1 lists the common name, scientific name and 

family of all species used in this work. 

 

Table 1. Bird Species 

Scientific Name Common Name Family 

Amazona 

rhodocorytha 

Red-browned Amazon Psittacidae 

Amazona aestiva Turquoise-fronted 

Amazon 

Psittacidae 

Aratinga auricapillus Golden-capped 

Parakeet 

Psittacidae 

Primolius maracana Blue-winged Macaw Psittacidae 

Triclaria malachitacea Blue-bellied Parrot Psittacidae 

 

We collected in total 109 different recordings of which 59 

were from the Xeno-canto database, and 50 from the Wikiaves 

dataset. These 109 recordings can be separated into 5 classes, 

according to the subspecies of Psittacidae. In this way, 47 re-

cordings were of the Amazona rhodocorytha (AR), 10 for the 

Amazona aestiva (AA), 12 classified as Aratinga auricapillus 

(AU), 15 identified as Primolius maracana (PM), and 25 of the 

recordings were of the Triclaria malachitacea (TM). It is worth 

noting that, as most of these recordings are over long periods 

of time and rich in acoustic vocalizations, the segmentation 

stage will yield multiple examples from each recording for train-

ing the neural network.  

 

3.2. Experimental Protocol 

Firstly, it is worth remembering that, for training the mod- 

el, all 109 recordings were subjected to a pre-processing step. 

A manual segmentation of each recording file into multiple 

small segments containing only the relevant vocalization signal 

of a particular species was conducted. Next, all segments were 

subjected to a bandpass filter that only passed signals between 

900 and 5000 Hz. Afterwards, in the feature extraction step, the 

MFCC of each segment was extracted with the number of 

MFCC as n_mfcc = 20. Finally, the resulting matrix was flat- 

tened and zeropadded, as to have the same dimensions when 

training the ANN, and then normalized. 

Therefore, after this preprocessing step, the 109 original 

recordings were processed into 1185 samples that were fed to 

the ANN. Of the 1185, 424 were examples of Amazona rhodo-

corytha, 176 of Amazona aestiva, 179 of Aratinga auricapillus, 

194 of Primolius maracana, and 212 of Triclaria malachite- 

cea.  

All experiments with the MLP algorithm were conducted 

using lambda = 0.3 for the regularization parameter, with one 

hidden layer, and 100 hidden units. Experimentation with high-

er values for the hidden units and hidden layers did not yield 

noticeable better results to justify the additional computational 

overhead. Furthermore, we used the second order LBFGS op-

timization algorithm since the dataset used to train the network 

is relatively small. This algorithm also provides the advantage 

that fewer parameters need to be set, such as the learning rate. 

However, it is worth noting that tests conducted with the 

ADAM optimization algorithms displayed nearly the same re-

sults. 

For evaluation purposes, the main metric used was accu-

racy, and can be described as how close the result is to the cor-

rect value. Let TP be the number of true positives, TN be the 

number of true negatives and FP and FN be the number of false 

positives and false negatives respectively, accuracy can be given 

as:  

Accuracy: (TP + TN)/(TP + TN + FN + FP) 

Additionally, we also obtained results for 3 other evalua-

tion metrics, they are: precision, recall, and the F1 score. Pre-

cision tells how many of the selected objects were relevant 

(correct), while recall gives a measure of how many of the rele-

vant (correct) items were actually selected. Finally, the F1 score 

is a function of the precision and recall, giving a balance of 

both. These 3 metrics can be defined as follows:  

Precision: (TP)/(TP + FP) 

Recall: (TP)/(TP + FN) 

F1:
*

2*
precision recall

precision recall
  

It is worth noting that all metrics used for the evaluation 
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were obtained using scikit-learn (a machine learning library) 

evaluation tools and functions, as to maintain consistency 

(Scikit-learn, 2011).  

Furthermore, in order to build a robust model and help 

avoid overfitting, all experiments were conducted using a 5-fold 

stratified cross validation step, that is, all data was randomly 

split 5 times while preserving the proportion of samples for 

each class. Next, for each of the folds, the model was trained 

on the remaining data and evaluated with the one left out. With 

that, 5 results for each experiment were obtained and the mean 

and standard deviation were calculated. Finally, to estimate a 

reliable result, we repeated the described cross validation 10 

times and calculated the average performance presented in the 

following section. 

 

3.3. Experimental Results 

Several scenarios were considered in the experiments for 

evaluating the effectiveness of the model in identifying the 

Amazona rhodocorytha. We conducted experiments with dif-

ferent combinations considering the 5 classes (mapped to each 

of the 5 species of Psittacidae present in the same geographic 

localizations). Therefore, 5 different binary classification ex-

periments were performed. These combinations were Amazona 

rhodocorytha vs all other classes (ALL), and Amazona rhodo-

corytha vs each other class individually, that is AR vs AA, AR 

vs AU, AR vs PM and AR vs TM. 

Tables 2 and 3 list the classification result of the model 

under these scenarios, presenting the mean performance and 

standard deviation respectively. 

 

Table 2. Performance of the Neural Network for MFCC 

 Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

AR vs ALL 90.54 91.36 90.8 90.85 

AR vs AA 89.83 89.96 89.83 89.68 

AR vs PM 90.61 90.12 89.96 89.67 

AR vs TM 93.7 93.8 93.7 93.7 

AR vs AU 98.17 98.21 98.17 98.16 

 

Table 3. Standard Deviation of the ANN for MFCC 

 Accuracy Precision Recall F1 Score 

AR vs ALL 0.028 0.035 0.041 0.039 

AR vs AA 0.024 0.024 0.024 0.023 

AR vs PM 0.019 0.019 0.019 0.02 

AR vs TM 0.009 0.008 0.009 0.008 

AR vs AU 0.009 0.009 0.009 0.009 

 

The results show that even though the vocalizations of 

these species are similar to each other, the model was capable 

of differentiating the Amazona rhodocorytha from the other 

Psittacidae with 90% accuracy or more for all the scenarios. It 

is worth highlighting the results obtained for the AR vs TM and 

AR vs AU, with 93.7 and 98.17% respectively. Furthermore, 

as both cases presented a very low standard deviation error 

(0.009), it is possible to see that the model fit the data very well. 

For the AR vs ALL, AR vs AA and AR vs PM even though 

the results were slightly inferior, the model still showed great 

performance, especially considering all recordings used were 

real world data taken in different circumstances. An assump-

tion can be made that these 2 species, the Amazona aestiva and 

Primolius maracana, present the most similar vocalization pat-

tern to the Amazona rhodocorytha. Furthermore, the slightly 

higher standard deviation shown in AR vs ALL is due to this 

experiment having more variation among the samples given to 

the model to train and cross-validate, therefore increasing the 

complexity of the task.  

Additionally, all other evaluation metrics presented nearly 

identical performance results and standard deviation to the 

accuracy, for all cases. This further proves the robustness of the 

model under different scenarios, with a high precision and high 

recall. 

In Table 4 we break down the results listed in Tables 2 and 

3 and present a confusion matrix showing the number of TP, 

FP, TN and FN across one repetition of each experiment. 

 

Table 4. Confusion Matrix breakdown 

 TP TN FP FN 

AR vs ALL 372 702 59 52 

AR vs AA 401 138 38 23 

AR vs PM 409 157 37 15 

AR vs TM 401 187 23 25 

AR vs AU 422 172 7 2 

 

As expected, the number of True positives and True Neg-

atives was high across all cases as compared to the number of 

False Positives and False Negatives. Furthermore, we can no-

tice a high capability of the model in correctly identifying the 

Amazona rhodocorytha in all cases, with only few mistakes 

less than 10% error for this class in the individual scenarios. 

Furthermore, we can see that except for 2 cases, the AR vs ALL 

and AR vs TM, the number of FN was significantly lower than 

the number of FP. An interesting question of whether FP and 

FN have the same weight can be explored. In these types of ap-

plication, such as detecting endangered species, we consider 

that higher number of FP is more desirable than a high number 

of FN. This is because a human operator will be looking specif-

ically for these species, and it would be better to check some-

thing incorrect than to completely miss the presence of the spe-

cies in question.  

Additionally, it is possible to see that the results were bet-

ter for the class that had more samples. Thus, we believe that 

some of the error shown is because of class imbalance during 

training, and the model could have achieved even better results, 

had the same number of samples been used for each class. 

4. Conclusions 

In this study, we present an approach for the automatic de-

tection and identification of the Amazona rhodocorytha, an en-

dangered bird species endemic to Brazil. The proposed method 

consists of a 3-step approach, starting with a segmentation and 
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filtering phase of the original signal, passing through a feature 

extraction step, and ending with the training of an Artificial 

Neural Network model for classification tasks. 

Being simple to implement and flexible, the approach is 

capable of being carried out in several environments and with 

other species of birds. Furthermore, we tested the classification 

process with a difficult task of identifying the Amazona rhodo-

corytha among 4 other species that have very similar vocaliza-

tion patterns. As shown by the good results obtained, the meth-

odology proved to be both effective and robust for this type of 

application. 

Finally, as future work, we contemplate the following: (i) 

implementation of this method in conservation units in Brazil; 

(ii) apply the method in an extensive real soundscape database 

that is currently being constructed by continuous recording 

from multiple sensors. 
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