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ABSTRACT. Forest fire is a major ecological disaster, which has economic, social and environmental impacts on humans and also caus-

es the loss of biodiversity. Forest officials issue the warnings to the public on the basis of fire danger index classes. There is no fire dan-

ger index for the country India due to the sparsely distributed meteorological stations. In this study, we have made an attempt to integrate 

both the Static and Dynamic fire danger indices and also used the near real time data sets that can be available for download through 

Earthdata website after one hour of the satellite overpass and also automated the entire procedure. Static Fire Danger Index (SFDI) is a 

constant over the study area, computed from the MODIS Land cover type yearly L3 global 500 m SIN grid (MCD12Q1) and ASTER 

GDEM datasets. In this study, Dynamic Fire Danger Index (DFDI) has been calculated from the Near Real Time (NRT) Level 2 MODIS 

Terra Land Surface Temperature datasets (MOD11_L2) and MODIS TERRA NRT surface reflectance dataset MOD09. DFDI has been 

developed from three parameters i.e., Potential surface temperature, Perpendicular Moisture Index and Modified Normalized Difference 

Fire Index (MNDFI). Finally, The Forest Fire Danger Index (FFDI) has been developed from the static and dynamic fire danger indices 

by the additive model and the overall accuracy was ranging from 86% to 95% and Area under Curve (AUC) values ranging from 0.81 to 

0.91 during the major fire episode of 2018. Thus, the FFDI has been useful to assess the fire danger accurately over the study area and 

can be useful anywhere, where the meteorological stations are un-available. The procedure of calculating the DFDI and FFDI has been 

automated in R studio environment in near real time and therefore, the fire danger maps can be disseminated to fire officials in near real 

time for the quick actions to suppress the fire activities. 
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1. Introduction 

The Fire Danger indices are used as a tool by decision 

makers to issue warnings to the public, based on the level of 

fire danger classes i.e., No danger, Low, Moderate, High and 

very High, for implementing the mitigation measures to control 

the fires. The Fire Danger index is an integration of both the 

dynamic and static fire danger indices. Fire danger indices are 

broadly classified into two types viz. long-term indices (struc-

tural indices) and short-term indices. Long-term indices are in-

dicators of vegetation and topographic conditions as well as the 

anthropogenic factors that favor the occurrence of forest fires. 

Long term indices vary periodically like monthly and yearly 

and gives a clear understand about the spatial pattern of the fire 

events. Therefore, long-term indices have been used to deter-

mine the forest areas with high probability of fire occurrence. 

The variables for long-term indices are topography (elevation, 

slope, and aspect), vegetation type, proximity to settlements, 

distance to the roads, rail networks, and fire history. Whereas, 

short-term indices mainly consider parameters that changes sud- 
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denly and depend on factors influencing ignition and spreading 

the forest fires. The short-term variables are air temperature, 

relative humidity, wind speed and rainfall. 

Fire Danger Models can be used to predict the probability 

of occurrence of forest fire based on the forest fuel charac-

teristics, weather and topography. These are used in decision 

making for better management and control of forest fire. It can 

also be used as a tool to train and improve skills of firefighters 

and also to visualize, estimate and explain the behavior of fire, 

its spread and the control measures. At present, Canadian FWI 

(Fire Weather Index) approach was adapted in other countries 

such as Argentina, USA, and Alaska (Alexander and Cole, 

2001; Taylor, 2006), Indonesia (De Groot et al., 2007), Malaysia 

(De Groot et al., 2007), Mexico (Lee et al., 2002); New Zealand 

(Alexander and Fogarty, 2002), Portugal (San-Miguel-Ayanz et 

al., 2003), Spain (Viegas et al., 1999) and Sweden (Granström, 

2001) around the world for forecasting the fire danger on daily 

basis. The FWI calculation needs a set of automatic weather 

station parameters, such as air temperature, wind speed, and 

relative humidity during the mid-day; and point locations data 

of 24-h accumulated rainfall. The problem with the FWI is it 

employs the interpolation techniques, and it is evident that 

different interpolation techniques (for example, spline, kriging, 

IDW) may possibly generate different outputs even using the 

same set of data inputs. In other studies (Molders, 2008; Safi and 
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Bouroumi, 2013), statistical Numerical Weather Prediction 

model was used to calculate the Canadian CFFDRS danger 

indices and the US NFDRS danger indices at a spatial resolu- 

tion of one degree to one degree i.e., ~ 110 × 110 km2, where 

the main problem is the low spatial resolution. 

In this regard, geospatial techniques are useful with im-

proved spatial and temporal resolutions for monitoring and 

forecasting the fire danger conditions (Ceccato et al., 2002; 

Bajocco et al., 2010; Leblon et al., 2017). Understanding the 

importance of satellite datasets, researchers started using the 

satellite derived parameters for fire danger estimations. These 

satellite based products are: “Normalized Difference Vegeta-

tion Index (NDVI)” (Leblon et al., 2007), “Enhanced vegeta-

tion index (EVI)” (Bisquert et al., 2012, 2014), “Vegetation 

Index green (VI green)”, “Normalized Difference Infrared 

Index (NDII)” (Peterson et al., 2008; Sow et al., 2013), “Global 

Vegetation Moisture Index (GVMI)” (Sow et al., 2013), “Visi-

ble Atmospheric Resistant Index (VARI)” (Schneider et al., 

2008), “Normalized Multiband Drought Index (NMDI)” (Wang 

et al., 2008) and “Normalized Difference Water Index (NDWI)” 

(Stow et al., 2005) as well as meteorological vari-ables such as 

“surface temperature” (TS) (Oldford et al., 2006; Leblon et al., 

2007), air temperature (Ta) (Nieto et al., 2011), Relative Hu- 

midity (RH) (Nieto et al., 2011). 

The AVHRR-derived NDVI and TS images have been 

used in the calculation of the fire danger codes of the FWI 

system i.e., ‘Fine Fuel Moisture Content, Duff Moisture Code, 

Drought Code, BuildUp Index, and ‘Fire Weather Index code’ 

(Oldford et al., 2006; Leblon et al., 2007) and the correlation 

shows that they have similar pattern, but it was observed that 

there is no direct relationship between these parameters. NDVI 

and surface temperature (TS) were used to determine the live 

fuel moisture in the vegetation (Chuvieco et al., 2002). Live 

moisture can also be determined using greenness indices such 

as NDVI, VARI, VIgreen, EVI, and NDWI (Dennison et al., 

2005; Dasgupta et al., 2007; Peterson et al., 2008) as these in-

dices are more sensitive to changes in water content as well as 

the chlorophyll status in vegetation (Peterson et al., 2008). 

MSG-SEVIRI generated weather variables such as Ta and RH 

were used to determine the dead fuel moisture (Nieto et al., 

2011). 

Soil moisture is also an indicator for estimating the 

drought and forest fire danger. Soil moisture is an important 

variable for the growth of vegetation as well as the plant 

functionalities (Hari and Nojd, 2009) and indicate the weather 

and drought conditions in the forests (Fennessy and Shukla, 

1999). In general, soil moisture can be estimated from the 

ground-based methods either direct or indirect, but, direct 

methods are time consuming and do not have the spatial vari- 

ability. Surface wetness conditions can be estimated based on 

the relation between the vegetation index (VI) and Ts, the 

scatter plot of VI-Ts is to be a triangle or trapezoidal shape and 

surface wetness was calculated from the edges (Moran et al., 

2004; Carlson, 2007; Petropoulos et al., 2009). Hassan et al. 

(2007) developed the “Temperature Vegetation Wetness Index 

(TVWI)” by using the potential surface temperature instead of 

Ts to eliminate the effect of Terrain elevation and then com-

bined with NDVI (Hassan et al., 2007; Hassan and Bourque, 

2009). 

In the studies carried out by Schneider (2008) and Huesca 

(2009), various indices such as “NDVI, VARI, and NDWI” 

were used as a substitute to live fuel moisture in determining 

the “fire potential index” (Schneider et al., 2008; Huesca et al., 

2009). The results suggested that the indices “VARI” and 

“NDWI” have shown the best results of measuring the live fuel 

moisture conditions when compare to the “NDVI”. Another 

index, “Normalized Multiband Drought Index (NMDI)” was 

used in assessing the drought conditions and can be computed 

as follows (Wang and Qu, 2007, 2009; Wang et al., 2008). 

A very few studies have been carried out on the use of 

satellite data for the determination of probability of fire oc-

currence. Vidal and Devaux-Ros (1995) calculated the water 

deficit index (WDI) by relating NDVI and the difference be-

tween Ta and Ts and it effectively predicted the onset of fires 

(Vidal and Devaux-Ros, 1995). Guangmeng and Mei (2004) 

used MODIS-derived surface temperature over the forested 

regions of northeast China. They observed that surface temper-

ature values were increased at least 3 days before the occur-

rence of fires, but, the rate of increase of the Ts values for fire 

occurrence were not quantified. Oldford et al. (2003) utilized 

the NOAA AVHRR-derived Ts and NDVI parameters over the 

northern boreal-forested regions of the Northwest Territories in 

Canada. The results of the study showed increased trend of the 

surface temperature values at least 3 days before the fire occur-

rences similar to previous study (Guangmeng and Mei, 2004), 

while NDVI did not show any indication of the fire occurrence 

(Oldford et al., 2003).  

Akther and Hassan (2011) utilized the 8-day MODIS de-

rived composites of “surface temperature”, “Temperature Veg-

etation Wetness Index (TVWI)”, and NMDI, over the boreal 

forested regions of Alberta, Canada for the years from 2006 to 

2008 (Akther and Hassan, 2011). They found an accuracy of 

91.6% of the fire pixels in “very high” to “moderate” danger 

classes. Chowdhury and Hassan (2015) used the MODIS de-

rived parameters such as TS, NDVI, NMDI, and Precipitable 

Water (PW). They revealed that 95.51% of the fires fell under 

“extremely high” to “moderate” danger classes. MODIS 

TERRA 16-day composite EVI datasets from 2001 to 2006 

were used by Bisquert et al. (2012) for the computation of fire 

occurrence over Galicia, Spain and achieved an overall accu- 

racy of 58.2% when compared with the actual occurrence of 

fires. 

In light of above discussion, the present study describes 

the development of satellite-based forest fire danger index for 

Uttarakhand state of India as it does not have the sufficient 

number of meteorological stations especially in and around the 

forest. The developed forest fire danger index is an integration 

of the static and dynamic fire danger indices. The static fire 

danger index is based on the static variables like the forest 

types, topography and terrain characteristics whereas the dy-

namic fire danger index is based on the dynamic variables like 

air temperature, moisture conditions. 

The forests of Uttarakhand state of India, are prone to forest 
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fires, causing loss of biodiversity and degradation of the envi-

ronment. Most of the valuable plant and animal species are de-

pleted due to the frequent occurrence of forest fires (Babu et 

al., 2016, 2018) The near real time fire alerts are being gen-

erated at National Remote Sensing Centre (NRSC), and Forest 

Survey of India (FSI) using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor on TERRA and AQUA 

satellites and Visible Infrared Imaging Radiometer Suite data 

from the Suomi National Polarorbiting Partnership (SNPP-

VIIRS). Active fire location information is disseminated to 

state forest departments within half an hour after the satellite 

overpass and also uploaded on the respective website. But 

hitherto operational fire danger rating system has not been 

developed in India except zonation of risk areas in protected 

areas. In this study, an attempt has been made to develop the 

Forest Fire Danger Index (FFDI) by integrating the static and 

dynamic fire danger indices by an additive model.  

 

 
 

Figure 1. Study area – Uttarakhand state. 

2. Study Area 

Uttarakhand is a hill state in India, which shares an inter-

national border with China in the north and Nepal in the east. 

Uttarakhand lies between 28°43' N to 31°27' N latitude and 

77°34' E to 81°02' E longitude. It has an area of 53,483 km2 or 

10.3% total geographical area of the Himalaya inhabited by 

10.1 million persons living in 16,583 villages and 86 urban 

centers in 159 density per sq.km. At present, the state is ad- 

ministrated in 2 divisions, i.e., Kumaon and Garhwal com-

prising 13 districts: Almora, Bageshwar, Nainital, Cham-

pawat, Pithoragarh, U S Nagar (Kumaon), Dehradun, Harid-

war, Pauri, Tehri Garhwal, Uttarkashi, Chamoli, and Rudra-

prayag (Garhwal). Further, these districts are divided into 52 

Tehsils and 97 development blocks. Districts Haridwar and 

Udhamsingh fall into a plain area, whereas Nainital and 

Dehradun falls into both foothills and plain areas and rest nine 

districts totally lie in hill area. Uttarakhand has recorded forest 

area of 34,651 km2, which is 64.79% of its geographical area 

(ISFR, 2015) and Figure 1 shows the study area. 

Uttarakhand is largely a rocky mountainous region, where 

the altitudes dramatically fluctuate between 300 to 7,817 m. As 

a result, high mountain ridges and deep river valleys are com-

mon features in the mountain area and great plain in the 

southern part of the state. This abrupt altitudinal variation has 

obviously resulted in a complex but interesting diversity in 

topography, meteorology, flora, fauna, demography etc. from 

the Gangetic plain in the south a comparatively less elevated 

rain shadow zone of Trans-Himalaya in the north. The large 

variations in altitudes, the slope, aspect, presence of glaciers, 

forests, and its geographical locations has resulted in varying 

climates in different parts of Uttarakhand state, even at the 

micro or local levels. 

3. Satellite Datasets 

MODIS is one of the widely used satellite sensors on board 

NASA TERRA and AQUA satellite datasets that scientists have 

been using for global and regional studies. Table 1 show the 

datasets used in this study to develop the Forest Fire Danger 

Index (FFDI). The datasets were taken during the major fire ep-

isode of Uttarakhand state i.e., April 16, 2018 to May 2, 2018.  

 

Table 1. Satellite Datasets 

Name of Datasets Product ID Spatial 

Resolution 

Temporal 

Resolution 

Land Surface 

Temperature 

MOD11NRT 1 km Daily 

Surface 

Reflectance 

MOD09GA 

NRT 

500 m Daily 

Geolocation fields MOD03 1 km Daily 

Digital Elevation 

Model 

ASTER 30 m  - 

Fire and Thermal 

Anomalies 

MCD14 1 km Daily 

 

4. Methodology 

In this study, Dynamic Forest Fire Danger index and Static 

Fire Danger Index has been integrated to develop the Forest 

Fire Danger Index. The Static Fire Danger Index (SFDI) was 

developed from the fuel type danger index, slope danger index, 

aspect danger index, elevation danger index, and terrain rug-

gedness danger index. Whereas the Dynamic danger index has 

been developed from three parameters viz. Potential surface 

temperature, Perpendicular Moisture Index and Modified Nor-

malized Difference Fire Index using the near real time datasets, 

available through NASA Earthdata website after one hour of 

the satellite overpass. Figure 2 shows the methodology of the 

study. 

 

4.1. Static Fire Danger Index (SFDI) 

Static Fire Danger Index has been derived from the static 

parameters i.e., fuel, topographic and terrain characteristics, 
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which influence the spread of forest fires. SFDI was computed 

from the ASTER GDEM dataset and MODIS TERRA & 

AQUA land cover type product (MCD12Q1) (Babu et al., 2016 

b). The SFDI was computed from the integration of five distinct 

indices i.e., Fuel type danger index, Terrain ruggedness danger 

index, Slope danger index, Aspect danger index and Elevation 

danger index (Babu et al., 2016b). Figure 3 shows the com-

putation of SFDI by using packages raster, rgdal, Rcpp, sp, tiff, 

jpeg, EBImage, png, and locfit in R studio environment. 

 

 
 

Figure 2. Flow chart showing the methodology. 

 

 
 

Figure 3. Structure of SFDI. 

 

4.2. Dynamic Fire Danger Index (DFDI) 

Dynamic forest fire danger index has been developed by 

integrating three parameters such as potential surface temper-

ature, Perpendicular Moisture Index (PMI) and Modified Nor-

malized Difference Fire Index (MNDFI), which were derived 

from the MODIS TERRA and ASTER DEM satellite datasets. 

Uttarakhand has variable hilly terrain so, elevation influences 

the Land Surface Temperature (LST) because LST decreases 

with the increase of elevation due to the pressure drops with the 

increasing of elevation. Hence, Potential Surface Temperature 

(PST) i.e., terrain corrected temperature has been computed 

from the Near Real Time (NRT) Level 2 MODIS Terra Land 

Surface Temperature datasets (MOD11_L2) and ASTER 

GDEM using the Barometric formula. MODIS TERRA NRT 

surface reflectance dataset MOD09 has been used for gen- 

erating the PMI and MNDFI. 

This methodology has been taken from our previously 

published work (Babu et al., 2016a). The main difference from 

the previous work is temporal resolution and the level of satel-

lite dataset processing. In this study, Near Real Time datasets 

have been used instead of the 8-day composite datasets. These 

near real time datasets are available within 1 hour of the 

observation time of satellite overpass, downloaded through an 

FTP website. In this study, individual parameters were com- 

puted and have assigned the danger values from 1 to 5 based 

on the danger classes. The DFDI has been computed by adding 

the individual parameters i.e., PST, PMI and MNDFI.  

LANCE (The Land, Atmosphere Near Real Time Capa-

bility for EOS) supports the application users across the globe, 

who are working on the monitoring of natural resources and 

managing the disasters. LANCE NRT data available much 

quicker than general processing time, including the data and 

imagery from the sensors such as MODIS, AIRS, AMSR2, 

MISR, MLS, MOPITT, OMI, OMPS, and VIIRS (Earthdata 

website). DFDI has been computed from the Near Real Time 

(NRT) MODIS TERRA datasets, available through ftp server 

(ftp://nrt3.modaps.eosdis.nasa.gov/). Figure 4 shows the work-

flow to compute the DFDI in near real time by using R studio 

environment. 

 

 
 

Figure 4. Workflow diagram of DFDI. 

 

In the first step, MODIS NRT datasets can be downloaded 

from the http site or Earthdata website in tiles format. The Ut-

ftp://nrt3.modaps.eosdis.nasa.gov/
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tarakhand state covers in 4 MODIS tiles i.e., h24v05, h24v06, 

h25v05, and h25v06. MOD09GA and MOD11_l2 data can be 

downloaded tiles wise and saved into local directory for further 

analysis. The downloaded MODIS datasets are in HDF-EOS 

format and in different 4 tiles for the Uttarakhand. The datasets 

have to be converted into easily readable format i.e., GeoTIFF 

and also mosaic to get the datasets in a single seamless file. 

MOD09 consists of several parameters such as Bands from 1 

to 7 in 500 m spatial resolution, information about the band 

quality, solar zenith angle, view zenith angle. Bands 2, 5, and 7 

are required to compute the indices PMI and MNDFI. MODIS 

Reprojection Tool (MRT), an open source tool developed by 

LPDAAC, has been used to read the hdf files. Next step shows 

the entire preprocessing of MODIS NRT datasets in R studio 

environment.  

 

  
 

Figure 5. Steps involved in calculation of DFDI. 

 

MOD11 dataset consists of the parameters such as land 

surface temperature (LST) of day and night, emissivity of band 

31 and band 32, view time of day and night etc. The LST of 

day time has been extracted from MOD11 in similar way as like 

spectral bands. After getting the required datasets i.e., LST, 

Bands 2, 5, and 7 for each day, have been used to calculate the 

parameters PST, MNDFI, and PMI. The MODIS reflectance 

bands have to be multiplied by the scale factor 0.0001 to get 

the surface reflectance of B2, B5 and B7. Figure 5 shows the 

calculation of intermediate parameters and finally calculation 

of DFDI. 

PMI (Maffei and Meneti, 2014) and MNDFI (Vermote et 

al., 2002; EijiNunohiro et al., 2007) has been calculated by us-

ing the Equations 1 and 2 respectively: 

 0.73 5 0.94 2 0.028PMI R R      (1) 

 

7 2 5%

7 2 5%

Band Band
MNDFI

Band Band

  
    

 (2) 

 

where R5 and R2 are the MODIS spectral bands 5 and 2 respec- 

tively. 

PST can be computed from the MOD11_L2 NRT datasets 

by using the Barometric formulae: 
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4.3. Forest Fire Danger Index (FFDI) 

The FFDI has been calculated by integrating the static fire 

danger index and individual dynamic forest fire danger index 

on each day because each index has its own influence on fire 

danger. The FFDI has been categorized into 5 fire danger class-

es such as “very high, high, moderate, low and no fire danger” 

and Table 2 shows the value of forest fire danger and the corre- 

sponding danger classes.  

 

Table 2. Fire Danger Classes Assigned to FFDI  

S No Forest Fire Danger Index value Danger class 

1 ≤ 8 No fire danger 

2 9 ~ 16 Low 

3 17 ~ 24 Moderate 

4 25 ~ 32 High 

5 > 32 Very High 

5. Results and Discussion 

MODIS active fire hotspots have been used for validating 

the fire danger model in various studies as a proxy for the actual 

occurrence of fires (Chuvieco et al., 2008; Maeda et al., 2011; 

Adab et al., 2013; Eskandari and Chuvieco, 2015; Babu et al., 

2016a, b). Similarly, in the present study, MODIS active fire 

product MCD14 has been used for the validation. FFDI has 

been computed daily by integrating both SFDI and DFDI after 

computing the DFDI from the NRT MOIDS TERRA datasets 

and categorized into 5 classes based on the threshold conditions 

as shown in Table 2. Figure 6 shows the forest generated fire 

danger maps overlaid with the fire hotspots during the major 

fire episode in 2018. 

 

5.1. Fire Danger Index (FDI) - Validation 

The number of fire hot spots in each fire danger class from 

no fire to very high danger classes were extracted. It would be  
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Figure 6. Forest Fire Danger Index images of 2018 were overlaid with corresponding active fire location data. (a) 20 May, (b) 21 

May, (c) 22 May, (d) 23 May, (e) 24 May, (f) 25 May, (g) 26 May, (h) 27 May, (i) 29 May, 2018. 

 

 

Figure 7. ROC curves and the AUC. (a) 20 May, (b) 21 May, (c) 22 May, (d) 23 May, (e) 24 May, (f) 25 May, (g) 26 May, (h) 27 

May, (i) 29 May, 2018. 
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acceptable that the most of the fire hotspots should fell in high 

and very high danger classes rather than other classes of fire 

danger namely, no fire, low and moderate. It was assumed that 

the fires fell in high and very high fire danger classes are 

exactly predicted by the index, otherwise not predicted by the 

index. Receiver Operating Characteristic (ROC) technique is 

used for the effective validation of developed Fire Danger 

Index. ROC represents the probability curve while, the area 

under ROC curve (AUC) represents the degree of separability 

between classes and also expresses the quality of a prediction 

model (Yesilnacar and Topal, 2005). If the value of AUC is 

close to 1, then the result of model is excellent, where as the 

result of model is fairer when the AUC is near to 0.5. Figure 7 

shows the ROC curves for the fire episode in 2018 i.e., 20 May 

~ 29 May, 2016.  

Figure 7, the accuracies and AUC during the fire event 

(May 20 ~ 29, 2018) are: 90.14%, 0.85 (May 20); 88.3%, 0.856 

(May 21); 89.3%, 0.849 (May 22); 95.2%, 0.812 (May 23); 

91.4%, 0.885 (May 24); 92.4%, 0.825 (May 25); 90.7%, 0.913 

(May 26); 88.5%, 0.886 (May 27); 86.3%, 0.879 (May 29). It 

is clearly evident that the developed Fire Danger Index have 

the AUC values ranging from 0.81 to 0.91, that means close to 

one. If the result of the output is close to 1, the model perfor-

mance was good, therefore, the FDI is useful to predict the fire 

danger accurately over the study area.  

6. Conclusion 

In this study, Forest Fire Danger Index (FFDI) has been 

developed from the static fire danger index and dynamic danger 

index. Static fire danger rating index has been developed from 

the terrain characteristics i.e., fuel type, slope, aspect, eleva-

tion, Terrain ruggedness danger index and danger levels have 

been assigned based on the historical fire data. MODIS Land 

cover type (MCD12Q1) and ASTER GDEM have been used to 

develop the static fire danger index. The SFDI is useful to 

understand the spatial pattern of fire occurrence in the study 

area and used to determine areas of high fire danger due to the 

fundamental conditions that leads to fire occurrence. The Dy-

namic fire danger index (DFDI) has been computed from the 

Near Real Time satellite datasets such as MODIS Terra Daily 

surface reflectance product (MOD09), MODIS Terra Daily 

land surface temperature (MOD11_L2), and ASTER Digital 

Elevation Model (DEM). Three parameters Potential Surface 

Temperature (PST), Perpendicular Moisture Index (PMI), and 

Modified Normalized Difference Fire Index (MNDFI) have 

been calculated and were used to generate the dynamic fire 

danger index. 

The computed accuracy was ranging from 86% to 95% 

and AUC values ranging from 0.81 to 0.91, close to one i.e., 

the FFDI performance was good. Thus, the developed index 

has the potential for predicting the forest fires using the satellite 

derived products. The Forest Fire Danger Index has been 

computed from the near real time datasets, which can be 

downloaded from the HTTP server after the pass within one 

hour. The fire danger maps can be disseminating the forest fire 

danger maps to the forest officials for the controlling activities 

of forest fires. We are planning to upload the fire danger maps 

into the web portal in near real time so that fire danger maps 

can be accessed by public for precaution measures to control 

forest fires. 
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