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ABSTRACT. We combined multi-layer perceptron (MLP) neural network and Markov Chain (MC) modeling with object-based image 

analysis (OBIA) to map and predict land use and land cover (LULC) changes in Stoney Creek Watershed (SCW), British Columbia, 

Canada. Unsupervised classification was performed using Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) images 

to produce LULC maps of years 1986, 1999 and 2016. The classification resulted in an overall accuracy of 91.50%. The results show 

that coniferous forest in SCW experienced a sharp loss while agriculture area increased (4.77% land gain) from 1986 to 2016. LULC 

scenarios were predicted through MLP neural network and MC modeling based on LULC change analysis data and transition potential. 

The results indicated that ‘Coniferous Forest’ LULC type had the highest (3.38% land loss) transition potential and ‘Water’ and ‘Urban 

Area’ LULC types had the lowest transition potential. Application of the proposed method provided valuable information of LULC pat-

terns and dynamics for planners and researchers. The method also has the potential for improved management in other watersheds with 

similar LULC types. 

 
Keywords: geospatial analysis, land use and land cover (LULC) change, landsat imagery, markov Chain (MC) model, multi-layer 

perceptron (MLP) neural network, object-based image analysis (OBIA).

 

 

 

1. Introduction 

Land use and land cover are two different terms but are 

often used interchangeably by many researchers. Land use re- 

fers to the human use of the natural landscape for habitat and 

livelihood, while land cover represents the biophysical charac-

teristics such as vegetation, soil and water distributed on earth’s 

surface. The conversion of land use in the human subsystem 

driven by social activities will change land cover, and land co-

ver changes could impact natural environment and biosphere 

(Rawat and Kumar, 2015; Islam, 2018a; Chen et al., 2018). As 

a result, land use and land cover (LULC) change resulting from 

anthropogenic activities has led to various concerns for envi- 

ronmental degradation around the globe (Islam et al., 2018b; 

Paul et al., 2018). The assessment of LULC change is thus of 

critical importance for effective environmental management 

and sustainable development of land resources.  

Remote Sensing (RS) techniques can be used for LULC chan-

ge detection and understanding the dynamics of the change. 

Due to the spatial data management, creation, and analysis func- 
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tions of geographic information systems (GIS), the combina-

tion of RS and GIS has been successfully applied as an effecti-

ve technique in LULC change detection (Paul, 2013; Srivastava 

et al., 2013; Nguyen et al., 2016). Satellite remote sensing tech-

nology is especially popular as it is supported by satellite sen-

sors which could provide time-series image data with high spa-

tial resolution and geometric precision, and can capture tempo-

ral variation (Stabile, 2012; Pervaiz et al., 2016). Landsat satel-

lite images which provide a continuous inventory of imagery 

since 1972 have been widely applied for LULC analysis 

(USGS, 2016). The Landsat sensors have proved sensitive eno-

ugh to categorize different spectral patterns related to the LU-

LC classes in many complex landscape conditions (Zhao et al., 

2012; Butt et al., 2015). RS analysis for change detection is 

usually relying on digital satellite image classification by assi-

gning image pixels to real-world LULC feature types (Paul et 

al., 2018). Pixel-based classification (PBC) is a conventional 

method and has been broadly applied as supervised and unsu-

pervised classification based on characteristics of single pixel 

(MacLean et al., 2013; Rwanga and Ndambuki, 2017). Howe-

ver, when a pixel-by-pixel classification algorithm is applied to 

all available image signals, the pixels with similar spectral re-

flectance are grouped together, while some spatial and conte-

xtual information of image pixels are neglected. Thus, the pi-

xels may not represent true geographical objects when using 

PBC method, and its accuracy would be affected (MacLean et 
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al., 2013; Blaschke et al., 2014). Compared with PBC, the 

object-based image analysis (OBIA) method generates seg-

ments from pixel-based features to produce higher classifica-

tion accuracy by incorporating more information and cre-ating 

more recognizable segments (Frohn, 2011; Chen et al., 2013; 

Ma et al., 2017; Paul et al., 2018). The OBIA method also 

allows more types of features in the image to be exploited for 

classification, and it can reduce the changes resulting from the 

occurrence of small and spurious pixels (Toure et al., 2018). 

 

 
 

Figure 1. Location and channel network of Stoney Creek 

Watershed. 

 

In addition to RS and GIS analysis, LULC models are 

supportive tools for studying the transition among different 

LULC categories, and models are available to examine the cau-

se and consequence of LULC change (Behera et al., 2012; Hua, 

2017). Among them, spatial models can be manipulated using 

remote sensing data with geographical referenced information, 

and thus can be effective for predicting the LULC change (Halmy 

et al., 2015; Urban and Wallin, 2017). Markov Chain (MC) mo-

del and other spatially explicit models have been incorporated 

with RS and GIS technologies for more effective simulation 

and prediction of LULC change. MC model examines the sto- 

chastic nature of LULC change data and forecasts the stability 

of future land development. It is used by generating a trans-

ition probability matrix of LULC change from one period to 

another (Iacono et al., 2015; Mishra and Rai, 2016; Paul et al., 

2018; Azubike et al., 2019).  

For a specific study area, each individual model has its 

limitation to detect all essential LULC change processes. 

Therefore, it is desirable to combine two or more models to 

reduce the uncertainty of prediction (Freier et al., 2011; Stabile, 

2012; Arekhi and Jafarzadeh, 2014; Qiang and Lam, 2015; 

Mishra and Rai, 2016). The integration of multilayer percep-

tron (MLP) neural network model with MC modeling is a 

recently developed method for quantifying the spatiotemporal 

change of LULC in a spatially explicit manner. Specifically, 

the MLP neural network is an innovative algorithm that can 

automatically generate a large amount of parameter values but 

requires less data for training (Nasiri et al., 2019). MLP has the 

capability to model each LULC transition in a study area (East-

man, 2012; Paul, 2013), while MC model is able to predict 

future LULC change based on transition probability matrixes 

over a certain period of time. The objective of this study is then 

to apply a hybrid approach of MLP neural network and MC 

modeling for geospatial analysis of LULC change and LULC 

change prediction, through a case study in Stoney Creek Water-

shed (SCW), British Columbia, Canada. The combined RS and 

GIS analysis approach is used to process Landsat image data of 

the study watershed through an OBIA method. The detailed 

tasks include i) detection of LULC change in SCW from 1986 

to 2016, ii) identification of transition potentials of LULC 

classes driven by different variables, and iii) prediction of LU-

LC scenarios in SCW up to 2026. The results are expected to 

provide valuable information for environmental conservation 

and sustainable development planning in the watershed. 

2. Overview of the Study Area 

Stoney Creek Watershed (SCW), with a total drainage area 

of 496.963 km2, is located to the south-west of Vanderhoof, 

British Columbia (BC), Canada (Figure 1). Vanderhoof District 

is not only a significant timber supply area, but also one of the 

earliest agricultural settlements in BC. Unfortunately, the capa-

city of agricultural production of SCW has not been fully reali-

zed for planned and reserved agricultural lands (RDBN, 2014; 

Agricultural Land Use Inventory, 2017). The Stoney Creek has 

a total length of 20.85 km. It meanders through mountainous 

terrains from its headwater to a relatively flat agriculture and 

ranching zone, and confluences with the Nechako River near 

downtown Vanderhoof. Figure 1 shows the main channel of 

Stoney Creek and its tributaries. 

3. Methodology 

3.1. Data Selection and Collection 

In this study, several reconnaissance field surveys were 

conducted for ground truth data collection from 2017 to 2018. 

The obtained information was used for image classification and 

accuracy assessment. Information and characteristics of differ-

rent LULC categories were identified based on land survey data 

and information gained from the stakeholders. In total, 10 LU-

LC classes were created and named for the subsequent satellite 

image analysis, including Agricultural Area (AA), Barren Land 

(BL), Coniferous Forest (CF), Cut Block (CB), Deciduous 

Forest (DF), Mixed Forest (MF), Planted/Regrowth Forest 

(PF), Urban Area (UA), Water (WT) and Dead Pine Trees 

(DT). A modified version of the Anderson scheme was applied 

as a reference for describing and identifying LULC classes 

(Anderson, 1976). 

The selection and collection of satellite imagery were con-

sidered based on study objectives, availability and quality of 

satellite images and acquisition time. As a result, three images 

captured by Landsat 5 Thematic Mapper (TM) level 1 from 

1986 and 1999 and Landsat 8 Operational Land Imager (OLI) 

level 1 from 2016 were selected and downloaded from Earth-

explorer and Remotepixel websites for the purpose of capturing 
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LULC change within SCW from early 1980s to present (Table 

1). For Landsat 5 image data, bands 6 and 7 were excluded. For 

Landsat 8 data, bands 2 ~ 6 were selected for the study. In this 

study, the year 1986 represents the earliest year with available 

spectral image data of 30-meter resolution. The year 1999 is 

when significant actions were taken by the BC government 

such as province-wide aerial overview surveys (Province of 

BC, 2016) after the mountain pine beetle infestation occurred 

in the central interior region in the late 1990s. The 2016 image 

represents the current LULC status within SCW. All imagery 

with less than 5% or no cloud cover were selected between late 

July and early August in order to ensure that vegetation catego-

ries (including AA, CF, DF and MF) were in good health and 

maturity. Moreover, by using similar dates from each year can 

effectively reduce the impact of seasonal variability. In this 

study, the study area boundary was generated by merging the 

main Stoney Creek basin and the sub-basins around it based on 

the distribution range of tributaries. All watershed boundary 

data was downloaded from the iMapBC website. 

 

Table 1. Description of Selected Satellite Images 

Year Date Landsat Bands Resolution (m) 

1986 July 21 5 TM Level 1 1 - 5 30 

1999 July 9 5 TM Level 1 1 - 5 30 

2016 August 17 8 OLI Level 1 2 - 6 30 

 

3.2. Landsat Image Processing and Analysis 

Processing and analysis of the three satellite images were 

applied using two main software packages: PCI Geomatica 

2017 and Esri ArcGIS 10.5.1. PCI Geomatica 2017 was mostly 

used to conduct image pre-processing, classification and accu-

racy assessment. ArcGIS 10.5.1 was used mainly for image 

post-processing, such as format converting, mapping, and stati-

stical analysis. Figure 2 shows the framework of image pro-

cessing and analysis. 

 

3.2.1. Image Pre-Processing 

The SWIR-NIR-Red ‘false color’ composite provides the 

user with the highest amount of information and color contrast. 

This combination has not only been widely used for vegetation 

studies, but also for timber management and pest infestation 

(Quinn, 2001). Healthy vegetation is green while soil shows as 

mauve in this combination. Waterbodies appear in different 

shades of blue depending on depth and turbidity of water. The 

Adaptive enhancement, which shows the best enhancement re-

sult, was applied for all three Land-sat images (Figure 3). 

 

3.2.2. Image Classification 

Object Analyst on Geomatica 2017 was utilized to conduct 

OBIA. There are six steps: segmentation, feature extraction, 

calculating features, unsupervised classification, rule-based 

classification and manual editing. To perform OBIA, combina-

tions of different parameters including scale (SC), shape (SP) 

and compactness (CP) can greatly influence the results of seg-

mentation. The study watershed is mostly covered by forest and 

agriculture lands and also comprises small features such as 

built-up areas. Multiple tests in this study showed that the com-

bination with SC: 25, SP: 0.25, and CP: 0.5 had the most satis-

fying segmentation result, as it segmented most of the needed 

objects with the least disturbances. Performing feature extrac-

tion provides attributes of all segments, which are the reference 

data for image object classification. In Object Analyst, two ty-

pes of features were computed. The statistical features inclu-

ding minimum, maximum, mean and standard deviation, were 

computed by the pixels within an object. The geometrical 

features including compactness, elongation, circularity and 

rectangularity were computed using the geometric characteris-

tics of objects based on the segment boundary created during 

segmentation (Geomatica, 2017). All these features were added 

to the attribute table of each segmentation layer and used as 

basic band attributes. In order to generate a more accurate clas-

sification result, by using statistical features, four new features 

were calculated, including normalized difference vegetation 

index (NDVI), TM 2/3 ratio, TM 3/2 ratio and TM 3/4 ratio 

which can sharply classify live vegetation, croplands and bar-

ren lands, forests and croplands, and barren lands and urban 

area, respectively (NASA 2000; Quinn 2001). 

 

 
 

Figure 2. Landsat image processing and analysis framework. 

 

All features for band 3, 4 and 5 (4, 5 and 6 for 2016 image) 

were selected for unsupervised classification. There were nine 

classes (no DT class) for images from 1986 and 1999, and ten 

classes from 2016. In order to get better classification results, 

clusters were generated with twice as many as the selected LU- 

LC classes, and thus 20 clusters were set. To edit and improve 
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Figure 3. Landsat images in Stoney Creek Watershed for (a) 1986, (b) 1999 (both with 5-4-3 band combination) and (c) 2016 (with 

6-5-4 band combination). 

 

 
 

Figure 4. Land use and land cover classification maps of Stoney Creek Watershed in (a) 1986, (b) 1999 and (c) 2016. 

 

classification results, custom classification rules were perfor-

med on classified or unclassified segments by assigning or re-

moving them. The rule-based classification tool could simply 

split a class into subclasses or combine two classes into a new 

one. An extra step was used to support classification by selec-

ting specific range of a feature. Applicable ranges were picked 

by adjusting the minimum and maximum values based on te-

sting and ground truth experiences. For example, the cluster 

with both segments of barren lands and segments of unvegeta-

ted croplands could be split by using ‘Mean_2/3 Ratio’ field as 

the range field, as this feature is unique for separating barren 

lands and crop-lands, or by using the ‘Rectangle’ feature be-

cause of the artificial shape of most cropland. Figure 4 shows 

LULC classification maps of SCW for each year. 

 

3.2.3. Accuracy Assessment 

Before generating a final classified image, accuracy asses-

sment is usually performed by using a reference map which is 

field-checked or contains ground truth data for selected sam-

pling points (Paul et al., 2018). In this study, because of the 

lack of reference map and the ground truth data of SCW was 

only collected from 2017 to 2018, a training field was created 

for the 2016 image. By comparing unsupervised classified 

image and training field, three accuracy reports were generated. 

The classification accuracy of image 2016 could represent the 

accuracy of images 1986 and 1999 because almost the same 

procedures, features and rules were applied for classifying the 

images of all three years. To avoid the subjectivity of manual 

point selection, ArcGIS points creating tool was used to gener-

ate random point layers for accuracy assessment. In total, 200 

random points were created to distribute proportionally in rela-

tive classes, which means the classes with bigger areas such as 

‘CF’ and ‘DF’ covered more points than classes with smaller 

areas. By overlaying the random points layer on the prepro-

cessed satellite image of 2016, segments covering those points 

were distinguished based on ground truth data and assigned to 

relative classes. 

In the accuracy assessment report, the Kappa coefficient 

was used to estimate the agreement between a modeled LULC 
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Table 2. Introduction of Driver Variables for Transition Potential Modeling 

Driver variable layers Role 

Hazard rating of mountain pine beetle 

infestation 

This driver comprises extent and hazard rating of pine beetle infestation. 

Distance to major channel network This driver controls the general hydrology in this watershed. 

Distance to recommended permanent roads This driver responsible for road development, built-up area development, forest clear cutting 

etc. 

Digital elevation model (DEM) This driver determines the hydrological flow path i.e. overall hydrological process within a 

watershed (Paul, 2013). 

Topographic wetness index (TWI) TWI defined as Ln(A/tanB) (Sörensen, et al., 2006) where, A = local upslope area draining 

through a certain point per unit contour length, tanB = the local slope. 

Settlement reserved area and Agriculture 

development area 

These two can influence future built-up area and croplands development, forest harvesting 

etc. 

 

Table 3. Accuracy Statistic Results for 2016 Image Classification 

Overall Accuracy: 91.50%  

Overall Kappa Statistic: 0.90 

Class Name Producer's Accuracy (%) User's Accuracy (%) Kappa Statistic 

Agriculture Area (AA) 100 85.71 0.84 

Barren Land (BL) 83.33 93.75 0.93 

Coniferous Forest (CF) 100 88.89 0.88 

Cut Block (CB) 92.16 95.92 0.95 

Dead Pine Trees (DT) 89.47 73.91 0.71 

Deciduous Forest (DF) 87.5 95.46 0.95 

Mixed Forest (MF) 88.57 91.18 0.89 

Planted/Regrowth Forest (PF) 91.67 100 1 

Urban Area (UA) 100 100 1 

Water (WT) 100 100 1 

contribution and ground truth (Lillesand et al., 2008). The 

Kappa coefficient is computed using the following equation 

(Tadele et al., 2017; Congalton and Green, 2019): 

 

1 1

2

1

n n

ii i i

i i

n

i i

i

N X X X

N X X

K
 

 

 








 


 (1) 

 

where N is the number of observations; n is the total number of 

rows/columns in the error matrix; Xii represents the number of 

observations in row i and column i; and Xi+ and X+i represents 

the total number of row i and column i, respectively. 

Overall accuracy is the ratio between the total number of 

correct classifications and the total number of classifications. 

User’s accuracy defines the ratio between the number of correct 

classifications in a category and the total number of classifica-

tions in that category, and Producer’s accuracy is the ratio bet-

ween the number correctly identified in reference plots of a gi-

ven category and the actual number in that reference category.  

 

3.3. LULC Change Modeling 

3.3.1. Change Analysis 

Land Change Modeler (LCM), as an integrated application 

on IDRISI Selva, is employed for LULC change modeling in 

this study. Figure 5 presents the framework of LULC change 

modeling. The analysis of historical LULC data was performed 

through ‘Change Analysis’ module in LCM and was applied 

for three sets of time periods: T1 (1986 to 1999), T2 (1999 to 

2016) and T3 (1986 to 2016). T1 and T2 were used for assessing 

changes (i.e. area gains and losses), and T3 was used for transi-

tion potential modeling and change prediction as it represents 

the time range between the earliest time and the latest time. 

With the application of six driver variables, each transition that 

was created by T3 change analysis was modeled as a sub-

model. Table 2 presents the driver variables, which were select-

ed based on data availability, land use activities and policies as 

well as the existing references. The variables were converted to 

layers in IDRISI format and evaluated for their usability. 

 

3.3.2. Multi-Layer Perceptron (MLP) Neural Network 

Using multi-layer perceptron (MLP) neural network tech-

nique, transition potentials were modeled by a back propaga-

tion (BP) learning algorithm which can model highly non-line-

ar functions. A typical MLP neural network consists of one in-

put layer, one or more hidden layers and one output layer. 

Generally, one hidden layer is adequate for most studies (Lin 

et al., 2011; Eastman, 2012). For running transition sub-

models, the training process used samples taken from pixels 

that went through the transition being modeled, or pixels from 

persistence classes. 50% of the samples were used for training 
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Table 4. Area (km2) Statistics of land Use and Land Cover Types for Each Study Year 

        1986        1999        2016 

LULC Class Area % Area % Area % 

Agriculture Area (AA) 24.113 4.85 30.352 6.11 47.786 9.62 

Barren Land (BL) 45.108 9.08 40.962 8.24 32.072 6.45 

Coniferous Forest (CF) 191.898 38.61 153.207 30.83 94.282 18.97 

Cut Block (CB) 9.920 2.00 11.852 2.38 4.109 0.83 

Dead Pine Trees (DT) 0.000 0.00 0.000 0.00 74.339 14.96 

Deciduous Forest (DF) 54.290 10.92 70.465 14.18 67.306 13.54 

Mixed Forest (MF) 111.333 22.40 112.984 22.73 106.444 21.42 

Planted/Regrowth Forest (PF) 20.257 4.08 35.288 7.10 29.585 5.95 

Urban Area (UA) 2.037 0.41 3.188 0.64 2.835 0.57 

Water (WT) 38.006 7.65 38.664 7.78 38.205 7.69 

 

Table 5. Transition Probability Matrix of Land Use and Land Cover Change from 2016 to 2026 

Probability of changing to 

Given Class AA BL CB CF DF MF PF UA WT DT 

AA 0.740 0.178   0.056 0.027     

BL 0.203 0.399  0.002 0.088 0.232 0.015 0.003 0.001 0.058 

CB  0.013 0.543 0.014 0.044 0.057 0.024  0.001 0.306 

CF    0.000  0.433 0.446   0.121 

DF 0.167 0.055  0.011 0.303 0.459  0.004   

MF 0.023 0.019 0.247  0.293 0.408 0.006 0.002 0.002  

PF  0.011 0.053 0.030 0.012 0.103 0.765   0.027 

UA    0.000  0.083 0.000 0.917   

WT  0.002 0.002  0.002 0.004 0.000  0.991  

DT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

and the remaining 50% were used for validation of the transi-

tion potential model. MLP in LCM is launched with an auto-

matic training mode, which is capable of monitoring and mod-

ifing the start and end learning rates by using the sample train-

ing data (Eastman, 2012). Default values are assigned to all the 

parameters except the number of hidden layer nodes. The de-

fault hidden layer nodes were used when the sub-model was 

run for the first time. More running tests were then performed. 

If the total accuracy and skill score increase, the value will be 

doubled, otherwise the last value is selected. Running MLP 

provided the report with the aggregate accuracy and the skill 

measure score. The following formula is the measure of model 

skill (Eastman, 2012): 

 

  
  1

A E A
S

E A





 (2) 

 

where E(A) is the excepted accuracy, and A is the measured 

accuracy. The expected accuracy (E(A)) is expressed as: 

 

 
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1
E A

T P



 (3) 

 

where T is the number of transitions in the sub-model, and P is 

the number of persistence classes in the sub-model. 

For the purpose of gaining higher modeling accuracy and 

skill score, it is necessary to remove the variables without po-

wer by using the backward stepwise analysis (Eastman, 2012). 

When running a sub-model with all the variables, each variable 

was held constant one after another to figure out the one with 

the least effect on modeling. If the model skill of holding a va-

riable constant was similar with the skill of modeling with all 

variables, the variable doesn’t affect the model significantly 

and it can be removed.  

 

3.3.3. Markov Chain (MC) Modeling 

In order to conduct LULC change prediction of SCW, the 

Markov Chain (MC) modeling was applied with the prediction 

date as 2026 by using all transition potential sub-models. In this 

procedure, the MC determines the amount of LULC change 

using land cover images from the earlier date to later date. It 

measured how much land is possible to transit from the later 

date to the prediction date (Eastman, 2012). In the MC method, 

different categories were applied as the states of a chain. The 

value at the previous time t + 1 (Xt+1) only depends on the value 

at time t (Xt), and not on the process passing through Xt. It can 

be expressed as (Weng, 2002):  

 

   1
X f Xtt




 (4) 

 

If the transition probabilities are tabulated in a transition 

matrix P, Xt-1 can be expressed as follows (Benito et al., 2010): 
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Table 6. Land Use and Land Cover Area Statistics of 2016 and 2026 

 2016 2026 

LULC Class Area (km2) % Area (km2) % 

Agriculture Area (AA) 47.786 9.62 59.492 11.97 

Barren Land (BL) 32.072 6.45 30.773 6.19 

Coniferous Forest (CF) 94.282 18.97 77.487 15.59 

Cut Block (CB) 4.109 0.83 1.809 0.36 

Dead Pine Trees (DT) 67.306 13.54 59.565 11.98 

Deciduous Forest (DF) 106.444 21.42 93.031 18.72 

Mixed Forest (MF) 29.585 5.95 30.687 6.17 

Planted/Regrowth Forest (PF) 2.835 0.57 2.846 0.57 

Urban Area (UA) 38.205 7.69 38.205 7.69 

Water (WT) 74.339 14.96 103.129 20.75 

 

 
 

Figure 5. Land use and land cover change modeling framework. 

 

 

Figure 6. Land gain and loss analysis for period (a) T1 (1986 ~ 1999) and (b) T2 (1999 ~ 2016). 
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1
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 (5) 

 

The Markov Chain analysis can create a transition proba-

bilities file, which describes the probability of land cover change 

from one period to another (Houet and Hubert-Moy, 2006; 

Araya and Cabral, 2010). Two types of soft predictions of the 

year 2026 were generated based on the present state of the 

transition potentials for each transition, including i) the maxi-

mum soft output, which shows a maximum transition proba- 

bility aggregation for all transition potentials, ii) the Logical 

OR type calculated as (a+b) – ab) (‘a’ and ‘b’ represent the 

transition potential of each sub-model) for all transitions in-

cluded, which could characterize a location with different 

transitions. Along with the soft output maps of transition pro-

bability, a hard prediction LULC map was also created for the 

year of 2026. A multi-objective land allocation algorithm was 

then applied to examine all transitions and generate a list of 

classes with both gain and loss land. While running this alloca-

tion procedure, all the changed land of a class was allocated 

and overlaid to generate the output (Eastman, 2012). 

4. Results and Discussions 

4.1. Assessment Accuracy 

Table 3 lists the results of producer’s accuracy, user’s 

accuracy, overall accuracy and overall Kappa value. In this 

study, the overall accuracy for image classification of 2016 is 

91.50%, while the overall Kappa coefficient is 0.90. Compar-

ing with the PBC method which may inaccurately group pixels 

with similar spectral reflectance, the integration of OBIA and 

rule-based classification generated higher classification accu- 

racy, especially for distinguishing between MF and CF/DF, and 

classes with typical features (i.e. UA, WT). Most of the LULC 

classes have a larger producer’s accuracy than overall accuracy 

except the classes of BL, DF, DT and MF. The lower accuracy 

for these four classes can be attributed to the limited Landsat 

image resolution and the lack of comprehensive ground truth 

data. However, the classification with overall accuracy above 

90% was considered adequate for this study. 

 

4.2. LULC Change Analysis 

The SCW has an area of 496.963 km2. In 1986, more than 

75% of the watershed was covered by different types of forest, 

and similarly in 1999, the forest including PF (7.10%) occupied 

almost 75% of the study area (Table 4). Forest lands also cove-

red the majority of the watershed in 2016. However, a new LU-

LC class of DT was added in 2016 that covers 14.96% of the 

total area. This LULC class was mostly transferred from CF 

and partly from MF. Although affected by DT, forest land still 

comprised almost 60% of the whole study watershed. 

Figure 6 shows the land gain and land loss of different LU-

LC types for both T1 (1986 ~ 1999) and T2 (1999 ~ 2016). 

Mature forest land, including CF, DF and MF occupied most 

of the study watershed from 1986 to 2016. From 1986 to 1999, 

CF experienced a great negative net change (i.e. more loss than 

gain) of 38.68 km2, while there was also a negative change for 

BL (-4.16 km2). In contrast, other LULC classes had more gain 

than loss, especially for DF and PF. The obvious changes of 

forest land may indicate the active forest industry during this 

period. From 1999 to 2016, the DT class experienced a sharp 

increase in this area due to the infestation of mountain pine 

beetles causing CF to lose 58.92 km2 in area. The other classes 

except AA, also had negative changes. An increasing trend for 

agricultural area since 1986 was observed, which may be due 

to the changing policies and activities for agricultural develop-

ment. The slight net change of UA indicates that there was no 

significant urban expansion and industrial development. The 

areas of the town of Vanderhoof and the Saik'uz First Nation 

Reservation remained stable from 1986 to 2016. 

 

4.3. Land Change Modeling 

In order to perform transition sub-model simulation, ef-

fective driver variable groups for each individual transition 

sub-model were selected. This was accomplished by utilizing 

the MLP neural network on LCM. Every driver variable selec-

ted for modeling process should be positive to influence the 

overall accuracy and skill measure. Otherwise, the drivers with 

no influence were excluded from the group. Running sub-mo-

dels with ideal driver variable groups generated transition po-

tential maps for individual transitions. Using the transition 

from CF to DT as an example, Figure 7 shows the change pro-

bability from 1986 to 2016. 

 

 
 

Figure 7. Transition potential map of ‘Coniferous Forest’ to 

‘Dead Pine Trees’ transition. 

 

The map shows that most areas with transition probabi-

lities of over 0.55 are distributed in the middle part of the water-

shed. In the 2016 image, the west part of the watershed was 

mostly covered by DT. The areas near DT are more likely to be 

affected by mountain pine beetle infestation. Moreover, the 

more southern the area, the less potential for the transition. 

Table 5 shows the probability of LULC change and persistence. 

As shown, classes of UA and WT have high probabilities of re-

maining as the same land uses (i.e. 0.917 and 0.991), meaning 

most of these areas can be persistent in 2026. PF (0.765) and 

AA (0.740) also have high probability of persistence. The pro-
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bability of PF transition to MF is 0.103. AA has a high probabi-

lity of remaining as the same land use type, but BL and DF 

could transfer to AA, with a probability of 0.203 and 0.167, re-

spectively. These all represent the suitable agricultural mana- 

gement in this area. CB has a probability of 0.543 to change to 

other LULC types in 2026. This can happen because CB area 

was planted or regrowth to become other forest lands. Based on 

the probability matrix, BL, DF and MF have proba-bilities of 

about 0.3 ~ 0.4 to remain. 

 

 
 

Figure 8. Land use and land cover hard prediction map for 2026. 

 

CF would change to MF and PF, with a probability of 

0.433 and 0.446, respectively. However, further research and 

more information about mountain pine beetle infestation areas 

are needed to explain the transitions from CF to others. The 

probability of CF changing to DT is 0.121, and it is the most 

influential aspect for CF decrease in 2016. As mentioned 

before, there were no DT type in the earlier date (1986). There-

fore, the row for DT in Table 5 is filled as not available (N/A). 

Figure 8 presents the hard prediction map of 2026. 

Table 6 lists the area statistics for both stages (2016 and 

2026). DT will gain areas from other classes, but this increasing 

trend has high uncertainty because of the lack of data for hard 

prediction. Based on the comparison between 2016 and 2026, 

AA shows an increasing trend in the next decade referring to a 

stable and planned agricultural development in this area. Forest 

land will experience a slight decrease according to the hard pre-

diction data, while the remaining classes have no significant 

changes. 

Similar to the hard prediction, soft prediction is also short 

of earlier data in the DT class. There was no sub-model for the 

transition from DT to other LULC types. Therefore, in the soft 

prediction map, the area of DT in 2016 is persistent. Figure 9 

presents two types of soft prediction maps, including a) logical 

OR soft prediction map which can describe areas with multiple 

transitions, and b) maximum soft prediction that represents a 

maximum transition probability aggregation for all transition 

potentials. 

Referring to both soft prediction maps, the middle and 

north area of the watershed have the highest potential to chan-

ge. These transitions may be attributed to the agricultural deve-

lopment and forestry activities. In the central north area, the 

transition probability is variable. Further south, the potential 

shows a decreasing trend. However, the PF extent has low 

transition potential, which means a high probability to be persi-

stent. In both soft prediction maps, WT and UA show no proba-

bility to change. 

 

 
 

Figure 9. Soft prediction maps for 2026: (a) Logical OR soft 

prediction, (b) Maximum soft prediction. 

5. Summary 

A Multilayer Perceptron neural network and Markov 

Chain modeling based geospatial analysis was combined with 

remote sensing and GIS technologies to conduct LULC change 

analysis, through a case study in Stoney Creek Watershed (SCW), 

Canada. Landsat image data were collected. The LULC classi-

fication yielded an overall classification accuracy of 91.50%. 

Based on the LULC change analysis data from 1986 to 2016, 

transition potentials were modeled by MLP neural network. 

Markov Chain model was utilized to generate future transition 

matrixes of 2026, while the matrixes data were applied for hard 

prediction result generation. Transition potentials were com-

puted together and transferred into soft prediction results, 

which show the transition probabilities. Based on the results of 

soft prediction, forestry lands with higher elevations had lower 

transition probabilities. Areas with the highest potential to 

change were mainly distributed in the middle and north part of 

the study watershed, which may refer to agricultural and forestry 

activities in these areas. If more satellite images for the period 

of mountain pine beetle infestation can be applied, the model-

ing outcomes of DT class would be better. Although there was 

limited availability of high-resolution spatial data, results of the 

study could provide important information for land use plan-

ning and natural resources management within the watershed. 

The method can also be applied to LULC change analysis in 

other watershed with similar LULC types. 
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