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ABSTRACT. This study evaluates land use/cover changes (LUCC), urban expansion, and landscape patterns in the Pearl River Delta 

(PRD) from 1995 to 2015. Specifically, by analyzing the spatial-temporal process and transfer direction of LUCC, as well as landscape 

pattern change, human activity and sustainable urban development can be better understood. The results show that forestland has the 

largest area (occupying more than 50%) in all landscape types. The forest coverage rate of the PRD is relatively high; meanwhile, forest-

land presents a spatially distributed form of aggregation. Urban-land expansion is primarily driven by population growth and economic 

development. The LUCC is imbalanced and shows a one-way transition; the proportion of built-up land increased from 7.91% in 1995 

to 14.34% in 2015 (urban expansion has nearly doubled in size). Foshan, Guangzhou, Shenzhen, and Dongguan have seen the most signi-

ficant expansion of built-up land, primarily through the occupation of large amounts of forest and cropland. The landscape tends to be 

more fragmented and diversified. Human activities, as the main driving force, need to avoid the acceleration of the urbanization process 

to occupy a large amount of ecological land in future development. 
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1. Introduction 

Land use has generally been considered a local environ-

mental issue; however, it is becoming a force of global im-

portance (Foley et al., 2005; Cai et al., 2007). Land use/cover 

change (LUCC) has essential impacts on regional ecological 

security and natural succession of ecosystems (Salazar et al., 

2015; Yu et al., 2018; Hu et al., 2019). Therefore, studying of 

LUCC is desired for sustainable social-ecological systems. 

Previously, there were several types of research on LUCC, 

which could be classified into four categories: exploring (1) the 

spatial-temporal analysis of LUCC (Jiao et al., 2019); (2) the 

effects of LUCC (economic impacts, environmental effects, 

ecological effects, etc.) (Du and Huang, 2017; Gong et al., 

2020); (3) the driving mechanism of LUCC (Hasselmann et al., 

2010; Li et al., 2020); and (4) the scenario prediction of LUCC 

(Dang and Kaisaki, 2017; Gomes et al., 2019). However, the 

amount of research on the spatial-temporal analysis of LUCC 

is the most due to it directly reflects the effects of climate 

change and human activities on the natural environment. De-

wan and Yamaguchi (2009) evaluated LUCC and urban expan- 

sion in Greater Dhaka using satellite images and socio-eco-

nomic data, which found that the land-use maps will contribute 

to both the development of sustainable urban land-use planning 
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decisions and also for forecasting possible future changes. Ve-

lázquez et al. (2003) found that Oaxaca has lost over half a mil-

lion hectares of forested areas during 1980 ~ 2001; the core re-

sults may contribute to the understanding of how LUCC and 

GIS methods can provide more targeted information that may 

help to improve conservation policies and land use planning 

strategies. 

Tremendous efforts have been made in studying the spa-

tial-temporal analysis of LUCC. However, there is a limited re-

port in analyzing changes in landscape patterns brought by 

LUCC and their interrelationships. Moreover, from a China 

perspective, there has been a crucial demand for scientific ba-

ses to dealing with economic development and land-use pro-

tection. This is especially true for Pearl River Delta (PRD) as 

located in the south of the country and with the highest GDP as 

well as rapid urban expansion. 

Therefore, as an extension of the previous efforts, the ob-

jective of this study is to explore the LUCC and landscape 

change in the PRD using the multivariate methods and varia-

bles. Specifically, the purpose entails analyzing the spatial-tem-

poral pattern on LUCC, the landscape distribution on a class 

level, the landscape heterogeneity, and LUCC impact on land-

scape pattern. Moreover, this study could provide a targeted 

suggestion that may help to improve environmental conserva-

tion policies and land use planning strategies. 

2. Overview of the Study Area 

The study area is the whole PRD region, which is an ag-



M. M. Hu and B. C. Xia / Journal of Environmental Informatics Letters 3(1) 49-58 (2020) 

50 

 

glomeration located in Guangdong, southern China (Figure 1), 

and covers approximately 54,000 km2 with a subtropical cli-

mate. The PRD is one of the most densely urbanized regions in 

the world and consists of nine municipals, which are Guang-

zhou (GZ), Shenzhen (SZ), Foshan (FS), Dongguan (DG), Hui-

zhou (HZ), Zhongshan (ZS), Zhuhai (ZH), Jiangmen (JM) and 

Zhaoqing (ZQ). The report released by the World Bank Group 

(2015) showed that the Pearl River Delta had become the most 

significant urban agglomeration in the world with the largest 

surface area and population. The PRD became a research hot 

spot due to the dramatic growth of economy, the rapid expan-

sion of cities, and the location neighbored with Hong Kong and 

Macao (Hu and Xia, 2019). And it is being planned to be a 

world-class Grand Bay Area by China's government. 

 

Figure 1. Location of the PRD. 

3. Methods 

3.1. Data Resource 

Five land use/cover maps of PRD in 1995, 2000, 2005, 

2010 and 2015 were downloaded from the Resources and En-

vironmental Sciences, Chinese Academy of Sciences (RESDC) 

(http://www.resdc.cn). The Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) global digital 

elevation model (GDEM) with a resolution of 30 m, which was 

used to obtain elevation (http://www.gscloud.cn/). The GDP 

and population data were collected from the Guangdong Statis-

tical Yearbook (from 1996 to 2016). 

 

3.2. Land-Use Transition Matrix 

Firstly, this study attempted to employ a quantitative ap-

proach in exploring the spatial and temporal distribution of land 

use in the PRD. Moreover, ArcGIS 10.2 is used to measure the 

land-use transfer matrix (the application of Markov model to 

LUCC). The Markov model can not only quantitatively indi-

cate the conversion between different land-use types, but also 

reveal the transfer rate between LUCC. Therefore, the charac-

teristics of the transfer structure and direction of the regional 

LUCC can state entirely. The land-use transition matrix can be 

calculated as (Muller and Middleton, 1994): 

1LC t tM M M      (1) 

 

The Markov chain equation is constricted using the land-

use distributions at the beginning (Mt) and at the end (Mt+1) of 

a discrete time period as well as a transition matrix (MLC) rep-

resenting the land-use changes that occurred during that period. 

It reflects the actual transition process of a system from time t 

to time t + 1, revealing the specific process of LUCC. 

3.3. Class Distribution Statistics 

 A primary goal of landscape ecology is to understand the 

development of spatial heterogeneity. Landscape pattern index 

is a quantitative indicator that can highly condense the infor-

mation of land use. Choosing a suitable index is very important 

for the rationality of landscape pattern analysis. Based on the 

research objectives and the ecological implications of each in-

dicator, this study screened eight landscape indexes at the level 

of class metrics (Table 1). Class metrics are computed for every 

patch type/class in the landscape. Using ArcGIS 10.2 software, 

the land use data of the PRD from 1995 to 2015 are converted 

into raster data in BIL format. The pixel size (resolution) is set 

to 500 m × 500 m. Furthermore, the landscape pattern analysis 

of various selected indexes is performed based on the Fragstats 

4.2 software. For details, refer to the tutorial of FRAGSTATS 

software (http://www.umass.edu/landeco/research/fragstats/do- 

cuments/fragstats.help.4.2.pdf) 

3.4. Detection of Landscape Heterogeneity 

Landscape heterogeneity controls the regional conse-

quences of processes occurring in ecosystems. Furthermore, it 

reflects the heterogeneity and complexity of land use and plays 

an essential role in controlling the ecological process of the 

landscape. In this study, landscape shape index (LSI), inter-

spersion juxtaposition index (IJI), Shannon's diversity index 

(SHDI), and aggregation index (AI) are selected to analyze the 

landscape pattern of the PRD. 

4. Results and Discussion 

4.1. Trends of LUCC 

Land use is mainly occupied by forestland, cropland and 

built-up land in the PRD. The main types of land use are differ-

ent in different cities; the forestland is located primarily on 

Zhaoqing, Huizhou and Guangzhou. Built-up land is mainly lo-

cated in Guangzhou, Foshan and Shenzhen. From 1995 to 

2015, the land use structure in the PRD changed significantly 

(Figure 2). The main characteristics are the continuous growth 

of built-up land and the occupation of cropland and forestland. 

In detail, the expansion of built-up land spread from the Pearl 

River to the surroundings. Foshan, Guangzhou, Shenzhen and 

Dongguan have the most significant areas of urban-land expan-

sion (Table 3). For example, the percentage of built-up land in 

Dongguan has increased from 28.6% in 2000 to 41.4% in 2005; 

it has a high-speed urban expansion. 

  

http://www.umass.edu/landeco/research/fragstats/do-
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Table 1. Class Distribution Statistics  

Index Formula Parameter 

Total Area (CA) 1
n

CA Ai ijj    Aij is the area of patch ij. 

Percentage of landscape 

(PLAND) 
/1

n
APLAND Ai ijj    A equals total landscape area. 

Number of patches (NP) NP Ni i  
Ni equals number of patches in the 

landscape of patch type (class) i. 

Patch density (PD) / 10, 000 100ANPDi i     

Edge density (ED) / 10, 0001ED
m AEikk    

Eik equals the total length of edge in 

landscape involving patch type (class) i. 

Patch cohesion index 

(COHESION) 

1
11 1

1 1 100

1 1

COHESION

m n
Piji j

Zm n AP ijiji j



  
   

   

 
   
   

  
 

 

Pij
* is the perimeter of patch ij in terms of 

number of cell surfaces; Aij
* equals area of 

patch ij in terms of number of cells; Z 

equals total number of cells in the 

landscape. 

   

Splitting index (SPLIT) 
2 2

1
/

n

ijj
SPLIT A A


     

Fractal dimension index 

(FRAC)    2 ln /4 / lnFD P Ai ij ij  Pij equals perimeter of patch ij. 

 

Table 2. Landscape Distribution Statistics 

Index Formula Parameter 

Landscape shape 

index (LSI) 
*

0.25LSI E A  E*equals total length of edge in landscape. 

Interspersion 

juxtaposition 

index (IJI) 

  ln 100 / ln 0.5 1
1 1

IJI

m m e eik ik m m
E Ei k i

 
    

           
      

 

Eik equals the total length of edge in landscape 

between patch types i and k; E equals total length of 

edge in landscape, excluding background; m equals 

number of patch types present in the landscape. 

Shannon's 

diversity index 

(SHDI) 
 ln1SHDI

m
P Pi ii     

Pi equals proportion of the landscape occupied by 

patch type i. 

Aggregation index 

(AI) 
 1001 max

giimAI Pii
gii

   

  
      

 

gii equals number of like adjacencies between pixels of 

patch type i based on the single-count method; 

max   iig equals a maximum number of like 

adjacencies between pixels of patch type i based on the 

single-count method. 

From 1995 to 2015, the area of built-up land increased by 

6.43% (3,466.09 km2), the LUCC of the PRD mainly mani-

fested in the conversion of other land types to built-up land (Ta-

ble 4). The population (permanent population at the year-end) 

increased from 32.90 million in 1995 to 58.27 million in 2015. 

The increase in population is closely related to the increase in 

built-up land. Specifically, the area of cropland and forestland 

decreased by 4.34% (2,339.47 km2) and 1.97% (1,061.93 km2), 

respectively. It shows that the industrial transfer of the PRD has 

reduced the proportion of the primary industry. The percentage 

of the primary sector in GDP dropped from 5.4% to 1.8% dur-

ing 1995 ~ 2015. The interference of land use by human activi-

ties has increased, which is related to the transformation of in-

dustrial structure. 

Furthermore, analyzing LUCC in different cities from 

1995 to 2015 (Figure 3). The LUCC in all cities has shown the 

expansion of built-up land and the rapid decrease in cropland 

and forestland. Among them, the increase in built-up land in 

Shenzhen and Dongguan accounted for the highest proportion 

of the total administrative area. The percentage of built-up land 

in Shenzhen has doubled from 22.03% in 1995 to 44.06% in 

2015. Similarly, the growing portion of built-up land in Dong-

guan accounts for 16.55%. The area of built-up land in Foshan 

and Guangzhou increased the most considerable (659.7 km2 

and 659.6 km2, respectively). The expansion of built-up land is 

obtained by occupying cropland and forest land. 

For the land use structure in 2015, the proportion of for-

estland in Zhaoqing, Huizhou, and Guangzhou is more than 

50%; the forestland is the dominant landscape occupied in the 

PRD. The Zhaoqing's economic development is the lowest in 

the PRD; however, as approximately 70.1% forest coverage 

and contains a national nature reserve in there (Hu et al., 2019). 

Guangzhou presents the highest GDP and has a significantly 

high forest cover. It indicates that Guangzhou employed ade-

quate environmental protection. There is also the similarity in 

Shenzhen; it has 46.44% forest coverage and the fastest eco-

nomic growth rate in the PRD. Dongguan's water area accounts 

for 25.47% (with most complicated river network in the PRD), 

and forestland occupied 20.24%, the land use mainly for built-

up land (35.35%). Consequently, the land use structure of 
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Dongguan is relatively unreasonable. The government should 

pay more attention to ensuring that the ecological area is not 

over-occupied, while economic development is in progress. 

Based on the transition matrix of land use types between 

1995 and 2015, Figure 4 shows the land use transformation net-

works. Land use transfer in Shenzhen, Foshan, and Dongguan 

is more complicated, mainly other types of land transferred to 

construction land. Taking Shenzhen as an example, the crop-

land decreased by 10.65%, the forestland decreased by 10.88%, 

and the built-up land increased by 22.03%. From the perspec-

tive of the reduction of forest land, Shenzhen has the most con-

siderable decline, but forestland is still the primary land-use 

type in Shenzhen. The cropland in Dongguan decreased by 

10.49%; the forestland decreased by 5.12%, and the built-up 

land increased by 16.55%. The urban-land expansion primarily 

driven by population growth and economic development. The 

direction and complexity of land-use change can be more clear-

ly represented by using a transfer matrix diagram. 

 

4.2. Variance of Landscape Pattern 

The landscape index of patch size, scale, structure and 

combination in the PRD is calculated though Fragstats software 

(Figure 5). From 1990 to 2015, the area of built-up land con-

tinued to increase, and human activities continued to increase. 

The area of water area changed relatively gently, but show a  

 

Table 3. The Change Trend of Land Use/Cover in the PRD from 1995 to 2015 (%) 

 1995 2000 2005 2010 2015   1995 2000 2005 2010 2015 

 Guangzhou (GZ)   Shenzhen (SZ) 

Cropland 38.8 37.5 35.5 32.9  32.1   Cropland 18.6  17.1  11.6  9.5  6.7  

Forestland 44.0 44.1 43.2 42.4  42.2   Forestland 53.2  48.2  46.6  42.4  41.5  

Grassland 1.4 1.4 1.5 1.3  1.3   Grassland 1.6  1.6  1.3  1.1  1.0  

Water 4.4 4.4 4.3 4.6  4.4   Water 2.2  2.2  2.3  2.1  2.2  

Built-up land 11.3 12.5 15.5 18.9  20.0   Built-up land 24.4  30.9  38.2  44.9  48.6  

Unused land 0.1 0.1 0.0 0.0  0.0   Unused land 0.0  0.0  0.0  0.0  0.0  

 Foshan (FS)   Dongguan (DG) 

Cropland 54.7 52.2  47.3  42.6  40.2   Cropland 31.7  31.2  22.9  18.3  16.4  

Forestland 23.7 23.5  22.9  22.4  22.1   Forestland 30.2  29.5  25.4  24.9  23.3  

Grassland 0.5 0.5  0.5  0.2  0.2   Grassland 3.7  3.5  3.1  2.7  2.5  

Water 6.1 6.0  5.9  6.1  6.0   Water 7.3  7.2  7.2  8.6  7.1  

Built-up land 15.0 17.8  23.3  28.7  31.5   Built-up land 27.2  28.6  41.4  45.5  50.7  

Unused land 0.0 0.0  0.0  0.0  0.0   Unused land 0.0  0.0  0.0  0.0  0.0  

 Huizhou (HZ)   Zhongshan (ZS) 

Cropland 24.4 22.9  25.2  24.5  22.9   Cropland 58.3  57.4  48.9  44.7  42.0  

Forestland 65.8 67.0  65.3  64.9  64.6   Forestland 23.7  23.2  21.0  20.9  20.5  

Grassland 2.5 2.4  2.5  2.5  2.4   Grassland 0.2  0.2  0.2  0.2  0.2  

Water 2.1 2.2  2.2  1.6  2.2   Water 5.3  5.3  5.3  5.3  5.2  

Built-up land 5.2 5.5  4.9  6.5  7.9   Built-up land 12.4  14.0  24.6  29.0  32.1  

Unused land 0.0 0.0  0.0  0.0  0.0   Unused land 0.0  0.0  0.0  0.0  0.0  

 Zhuhai (ZH)   Jiangmen (JM) 

Cropland 46.0  44.9  42.5  40.7  38.3   Cropland 34.8  34.4  34.8  34.0  33.4  

Forestland 37.2  35.8  35.2  34.2  33.9   Forestland 52.0  52.2  52.0  51.2  50.9  

Grassland 0.6  0.5  0.4  0.5  0.5   Grassland 3.4  3.4  3.4  3.5  3.5  

Water 5.9  5.3  4.8  4.8  4.8   Water 4.0  3.9  4.0  4.0  3.9  

Built-up land 10.2  13.5  17.0  19.7  22.5   Built-up land 5.7  6.1  5.8  7.2  8.3  

Unused land 0.1  0.0  0.1  0.0  0.0   Unused land 0.0  0.0  0.0  0.0  0.0  

 Zhaoqing (ZQ)   Pearl River Delta (PRD) 

Cropland 18.1  18.2  18.0  17.9  17.8   Cropland 30.2  29.4  28.4  26.9  25.9  

Forestland 76.3  75.9  75.9  75.5  75.3   Forestland 56.4  56.3  55.4  54.7  54.4  

Grassland 1.6  1.6  1.6  1.8  1.8   Grassland 2.0  2.0  2.0  2.0  2.0  

Water 2.1  2.1  2.2  2.2  2.2   Water 3.5  3.4  3.4  3.4  3.4  

Built-up land 1.9  2.1  2.3  2.6  2.9   Built-up land 7.9  8.9  10.8  12.9  14.4  

Unused land 0.0  0.0  0.0  0.0  0.0   Unused land 0.0  0.0  0.0  0.0  0.0  

 

Table 4. Land Use Transfer Matrix (%) 

  1995 

  Cropland Forestland Grassland Water Built-up land  Unused land Total 

2015 

Cropland 24.74 0.35 0.09 0.13 0.63 0 25.95 

Forestland 0.34 53.70 0.13 0.02 0.14 0 54.34 

Grassland 0.01 0.30 1.64 0.01 0.01 0 1.96 

Water 0.11 0.05 0.02 3.20 0.02 0 3.40 

Built-up land 5.08 1.91 0.15 0.09 7.10 0.01 14.34 

Unused land 0 0 0 0 0 0 0 

Total 30.29 56.31 2.03 3.45 7.91 0.02 100.00 
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Figure 2. The LUCC in the PRD from 1995 to 2015. 

 

 
 

Figure 3. LUCC in different cities. 
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Figure 4. Land-use type transformation network in different cities. 

 

downward trend, from 1859.7 km2 in 1995 to 1832.8 km2 in 

2015. The area of cropland shows a significant downward trend; 

it means that the industrial structure has changed, and the pro-

portion of primary industry has decreased significantly. The 

land use pattern is forestland > cropland > built-up land > water 

area > grassland > unused land. 

Affected by human activities, the edge density (ED) of 

cropland is the largest in all landscapes, showing a declining 

trend. There is a significant increase in ED of built-up land; the 

landscape heterogeneity is correspondingly improved. The dy-

namic characteristics of forestland are similar to the built-up 

land. From 1995 to 2000, the number of patches (NP) of built-

up land is the largest, and it of cropland ranks second. However, 

from 2000 to 2015, the NP of cropland is the largest, and it of 

built-up land ranks second. It showed that the fragmentation of 

cropland increased and the scale of farming decreased. Built-

up land presents the opposite trend, and the phenomenon of 

clustering is more noticeable. Mainly due to the acceleration of 

the urbanization process, the region witnesses a vigorous ex-

pansion of built-up land. Moreover, large areas of forestland 

are more conducive to the protection of biodiversity and the 

environment.  

The value of fractal dimension is cropland > forestland > 

grassland > built-up land > water area > unused land > 1. The 

fractal dimension index of cropland and forestland is the largest 

with the most complicated shape. However, the fractal dimen-

sion of the forestland has decreased, which indicates that hu-

man disturbance is increasing. In contrast, the fractal dimen-

sion index of built-up land is closer to 1. It means that the built-

up land with strong self-similarity, regular and simple shape. 

Furthermore, the cohesion index of built-up land has increased 

from 89.27 in 1995 to 98.07 in 2015. It shows that the built-up 

land presents agglomerated expansion mode, alleviates the 

negative effects of habitat fragmentation, and has a correspond-

ing promotion effect on regional diversity protection. The co-

hesion index of unused land is fluctuating, showing a down-

ward trend; It indicates that the transformation of unused land 

by human beings has increased, and unused land tends to be 

scattered. 

There is a notable difference in patch density (PD) of dif- 

ferent landscapes, among which the increase in grassland patch 

density is the most obvious. The PD of built-up land shows a 

downward trend. Urban expansion on the basis of original spa-

tial distribution, which leads to the decreasing number of patches 

and the clustering pattern of land use. The split index of crop-

land has increased from 0.978 in 1995 to 0.997 in 2015. With 
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Figure 5. Patch characteristics of land use in the PRD from 1990 to 2015. 
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Figure 6. Relationship between cropland and landscape metrics: (a) LSI; (b) IJI; (c) AI; and (d) SHDI. 

 

   

Figure 7. Relationship between built-up land and landscape metrics: (a) LSI, (b) IJI, (c) AI, and (d) SHDI. 
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the development of urbanization, a large amount of the crop-

land has requested by urban industrialization, and the extensive 

management of farmland in rural areas has become a serious 

phenomenon. The small-scale of self-cultivated land and de-

centralized collective agricultural has become an obstacle to 

the development of agricultural modernization (Ye, 2015). 

Meanwhile, the split index of forestland has increased due to 

the influence of human activities. 

From 1995 to 2015, the LSI increases by 1.618, indicating 

that the landscape shape of the PRD has become more irregular, 

and the perimeter has gradually increased (Table 5). The in-

crease in IJI means that one patch type is adjacent to more other 

classes, and the complexity of the landscape has grown. The 

most popular diversity index is Shannon's diversity index 

(SHDI). For details, SHDI is risen from 1.082 in 1995 to 1.153 

in 2015, indicating an increase in landscape diversity. A de-

crease in AI means a reduction in the degree of patch type 

aggregation. Overall, the landscape shape tends to become 

more complex and the pattern of different patch types ap-

pearing alternately more apparent. The landscape index indi-

cates that the interference from human activities is increasing 

in the PRD. 

 

Table 5. Landscape Metrics for the PRD from 1995 to 2015 

  LSI   IJI   SHDI   AI 

1995 65.419 61.570 1.082 72.984 

2000 66.004 61.883 1.094 72.737 

2005 66.280 62.572 1.120 72.627 

2010 67.040 63.332 1.142 72.298 

2015 67.037 63.901 1.153 72.300 

 

4.3. LUCC impact on landscape pattern 

The results show that LUCC has changed significantly, 

with imbalanced and a one-way transition. Landscapes tend to 

be more fragmented and diversified. The relationship between 

LUCC and landscape pattern shows that changes in cropland 

and built-up land may be the main driving factors of observed 

landscape pattern changes. LUCC is caused by both natural and 

human activities (Liu et al., 2017; Guo et al., 2019), with the 

latter being the major driving forces in the rapid urbanization 

process (Huang et al., 2014). 

With the economic development and population growth, 

the area of the built-up area has nearly doubled, and with the 

imbalance of the one-way transition (the change of cropland 

and forestland to construction land), some positive changes in 

landscape phenomena have occurred. LUCC has a direct im-

pact on landscape patterns. Analyzing the interaction between 

land use and landscape patterns can help improve the effective-

ness of land use management (Nagendra et al., 2004; Abdullah 

and Nakagoshi, 2006). From the PRD, different types of 

patches tend to be more complicated, the diversity is increased, 

and the agglomeration is reduced. It is the concrete manifesta-

tion of landscape heterogeneity and the result of various eco-

logical processes. 

Figure 6 shows the relationship between the area percent-

age of cropland and landscape indexes, indicating that changes 

in cropland directly affect the landscape pattern. The area per-

centage of cropland showing a downward trend, from 30.29% 

in 1995 to 25.95% in 2015. The landscape tends to be more 

complex, the higher diversity and lower aggregation. The im-

pact of built-up land on the landscape pattern of the study area 

is significant, and the correlation coefficient is higher (Figure 

7). When the area percentage of built-up land is increased, the 

LSI, IJI and SHDI will increase, and AI will decrease. 

5. Conclusion 

This study reveals the spatial-temporal changes in land-

use coverage and landscape pattern changes in the PRD from 

1995 to 2015. Twelve landscape indexes are selected from the 

perspectives of class and landscape distribution statistics. Fi-

nally, we comprehensively analyze the impact of LUCC on 

landscape pattern. 

Overall, the area percentage of built-up land increase from 

7.91% in 1995 to 14.34% in 2015, and the urban expansion 

nearly doubled. The prominent built-up land expansions find in 

Foshan, Guangzhou, Shenzhen and Dongguan; mainly though 

the occupation of large amounts of forest and cropland. For-

estland has the largest area in all landscape types, occupying 

more than 50%, and has the largest cohesion index. It shows 

that the forest coverage rate of the PRD is relatively high, and 

with the form of spatial cluster distribution. Urban expansion 

on the basis of original spatial distribution, which leads to the 

decreasing number of patches and the clustering pattern of land 

use. More patches in cropland mean weak connectivity; thus, 

the landscape is more fragmented. With the development of ur-

banization, a large amount of the cropland has occupied by ur-

ban industrialization, and the extensive management of farm-

land in rural areas has become a serious phenomenon. Human 

activities, as the main driving force, need to avoid the acceler-

ation of urbanization process to occupy a large amount of eco-

logical land in future development. This study could provide 

more targeted information that may support to improve envi-

ronment-friendly policies and land use planning strategies. 
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