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ABSTRACT. Forest fires are more frequent in Uttarakhand state, especially during the months from March to June each year, causing 

a major impact on forest resources, wildlife habitats, economic and environment. The essential factors favourable to fire danger are the 

ignition factors and spreading factors. Ignition factors are either natural or androgenic activities; spreading factors are type of vegetation, 

topographic properties and terrain characteristics and dynamic weather variables such as temperature, relative humidity and precipitation. 

Vegetation, topographic and terrain conditions are static, whereas the dynamic variables change more frequently in a day. In this study, 

Static Fire danger Index (SFDI) has been developed from the MODIS TERRA, AQUA and ASTER datasets namely, MODIS Land cover 

type yearly L3 global 500 m SIN grid (MCD12Q1) and ASTER GDEM. LULC danger index, Slope danger index, Aspect danger index, 

Elevation danger index and Terrain ruggedness danger Index have been generated from the above datasets  based on the historical fire 

data and field observation. The SFDI has been generated by integrating the above-mentioned indices and categorized into 5 fire danger 

classes from no fire to very high. The results were compared with the MODIS active fire product (MCD14) and the accuracy of SFDI is 

90%, 95.9% and 92.5% for the years 2015, 2016 and 2017 respectively. The SFDI is generated each year with updated MODIS land 

cover type product with a spatial resolution of 1 km and is useful to understand the spatial pattern of fire occurrence and also determine 

areas of high fire danger due to the static ignition factors. 
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1. Introduction 

Forest fires caused extensive damage to the forest resources, 

environment, humans and property across the world. Uttara-

khand forests in India are prone to forest fires, causing loss of 

biodiversity and degradation of the environment (Pyne et al., 

1996; Cochrane, 2003). Most of the valuable plant and animal 

species are depleted due to the frequent occurrence of forest fires 

(Mukhopadhyay, 2001). 

For forest fires to occur, the presence of factors conducive 

to forest fire occurrence is essential. The conditions conducive 

to forest fire risk and be broadly categorized into two types. The 

two types of factors i.e. ignition factors and spreading factors 

responsible for initializing and spread of forest fires. Forest 

fires are initiated either naturally or by anthropogenic activities 

(Negi, 1986). Most of the forest fires are due to human activi-

ties i.e. intentional and unintentional. Three main factors are con-

sidered to be responsible for the spread of forest fires: the first 

factor is the vegetation cover, which includes the type of forest, 

fine fuel moisture content and inflammability of fuel (Ye et al.,  
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2017). Topography is an important parameter, wherein slope, as-

pect and elevation play a major role in spread of forest fire 

(Kushla and Ripple, 1997; Butler et al., 2007). Final factor is 

Weather, which is a dynamic factor and influences fire ignition 

and spread involve parameters like relative humidity, air tem-

perature, wind speed and rainfall (Roberto Barbosa et al., 2010). 

Fuel and topography factors are static in nature, does not change 

over longer time periods where as the weather factor is dyna-

mic, changes frequently over short span of time. 

There is a strong relationship between the vegetation type 

and forest fire intensity and frequency as each vegetation type 

has a different fire proneness due to the flammability of veg-

etation (Raison, 2005). In general, coniferous forests are more 

prone to fires than deciduous forests, because of the lesser 

moisture content and higher resin/oil content in coniferous veg-

etation (Hély et al., 2000). Fuel is an important parameter be-

cause it influences the ignition potential as well as the inten-

sity of forest fire (Pyne et al., 1996). The state and type of the 

fuel describe the characteristic of forest fires. Fuel can be either 

living organic material like grass, shrubs, trees or dead material 

like fallen branches, leaves, needles, twigs etc. and the size, mois-

ture content, chemical composition influences the fire behavior 

and intensity (Whelan, 1995).  

Topographical features such as slope, aspect, elevation can 

influence the fire spread and behavior. Generally, fire travels up 



K. V. S. Babu and A. Roy/ Journal of Environmental Informatics Letters 4(1) 11-21 (2020) 

12 

 

the slope as compared to down the slope and influences rapid 

increase the fire spread (Kushla et al., 1997; Butlet et al., 2007; 

Babu et al., 2016b). Steepness of the slope influences the inten-

sity of solar radiation and fuel moisture and also influences the 

rate of fire spread. Aspect represents the direction of the slope, 

and based on the northern or southern hemisphere determines 

the amount of solar radiation and the type of vegetation present 

(Kushla et al., 1997; Butlet et al., 2007; Babu et al., 2016b). In 

the northern hemisphere, southern slopes receive more solar 

radiation as compared to the northern slopes so vegetation starts 

to dry by February-March in the slopes of the southern aspect 

and are highly dried up during the summer season. In contrast, 

slopes in the northern aspect are cooler and moist so drying up 

the vegetation is relatively slower (Måren et al., 2015). Eleva-

tion influences the amount of precipitation as well as the wind 

speed and therefore it affects the fire behavior (Babu et al., 

2016b). Elevation also affects the drying period of the vegeta-

tion. In lower elevations, vegetation tends to dry out sooner as 

compared to the higher elevations due to higher temperatures 

and lower precipitation in the lower elevations (Wimberly et al., 

2009). 

Fire danger rating systems are important tools for the man-

agement of fire activities such as forecasting the fire danger 

maps on the basis of static and dynamic parameters (Babu et 

al., 2019). The Fire Danger Rating System is a Decision Sup-

port System, which takes into consideration of all the factors 

affecting the fire danger such as fuel type, weather parameters 

and terrain characteristics and indexing into different classes of 

fire danger from no danger to extreme danger based on the val-

ue for the purpose of issuing warnings to the public, imple-

menting the mitigation measures for controlling fires (Babu et 

al., 2019). The most common fire danger rating systems are 

Canadian Fire Danger System (Van Wagner and Forest, 1987), 

Australia’s McArthur Forest Fire Danger Index (McArthur, 

1967), US National Fire Danger Rating System (Deeming, 

1977), and European Forest Fire Information System (Vilar et 

al., 2015). The Fire Danger Rating system is an integration of 

dynamic and static fire danger rating indices. Dynamic fire dan-

ger rating index is based on weather parameters such as air 

temperature, relative humidity, wind speed and rainfall while 

Static fire danger index is based on the constant parameters such 

as fuel characteristics, topographic conditions (Babu and Roy, 

2019). In this study, we have developed the static fire danger 

index as it gives the probability of fire distribution in the study 

area. Static fire danger index has been calculated from the con-

stant parameters such as fuel characteristics, topographic con-

ditions in this study. Till now, there is no studies available on 

the static fire danger indices except the fire risk zonation stu-

dies. 

2. Data Source and Study Area 

2.1. Data Source 

The Static Fire Danger Index (SFDI) was generated from 

the MODIS land cover type product (MCD12Q1) and ASTER 

GDEM datasets, which were downloaded from the NASA 

Earth data website (https://earthdata.nasa.gov/). The Moderate 

Resolution Imaging Spectroradiometer (MODIS) is a sensor on 

board NASA TERRA and AQUA satellites since 1999 and 2002 

respectively. The MCD12Q1 is a global land cover annual 

product of 500 m spatial resolution, it provides the five land 

cover schemes i.e. IGBP global vegetation classification scheme; 

University of Maryland scheme; Leaf Area Index / fraction of 

photosynthetically active radiation (LAI/FPAR) scheme; Net 

Primary Production scheme (NPP) and Plant Functional Type 

(PFT) scheme (LPDAAC website). The IGBP classified scheme 

is the primary land cover scheme and it consists of 17 land 

cover types (Belward et al., 1999; Friedl et al., 2010). The MO-

DIS product MCD12Q1 during the years from 2001 to 2014, 

were downloaded from the Earth Explorer website. Advanced 

Spaceborne Thermal Emission and Reflection Radiometer Glo-

bal Digital Elevation Model Version 2 (ASTER GDEM V2) 

product was developed by the NASA & Japan Ministry of Eco-

nomy, this can be downloaded from the Earth data website 

(https://earthdata.nasa.gov/). The MCD14 provides the thermal 

anomaly and fire location information, which can be derived 

from the MODIS 4 μm and 11 μm radiances. The MCD14 data 

have been downloaded from the Fire Information for Resource 

Management System (FIRMS) website (https://firms.modaps. 

eosdis.nasa.gov/). 

 

2.2. Study Area 

The study area is Uttarakhand state, hill state in India, which 

shares an international border with China in the north and Ne-

pal in the east. Uttarakhand lies between 28°43” N to 31°27” N 

latitude and 77°34” E to 81°02” E longitude. The location of 

the study area is shown in Figure 1. 

Uttarakhand state is largely a rocky mountainous region, 

where the altitudes dramatically fluctuate between 300 m to 7817 

m. The large variations in altitudes, the slope, aspect, presence 

of glaciers, forests, and its geographical locations has resulted 

in varying climates in different parts of Uttarakhand state, even 

at the micro or local levels. There are four major forest types 

distributed in this state, which include the Alpine meadows in 

the higher elevation above treeline, Temperate forest in the Hi-

malaya ranges, Tropical deciduous forests in the lesser Himala-

ya and mixed deciduous and thorny vegetation in the Shiwalik 

range and in some parts of the Terai. Forest fire is a regular fea-

ture in Uttarakhand forest ecosystems and most valuable plant 

and animal species can be depleted due to the frequent inciden-

ces of forest fires (ISFR, 2011). More than 50% of Himalayan 

forests in Uttarakhand are prone to high incidence of fire, dur-

ing the months from March to June in every year (Babu et al., 

2016b). 

3. Methods 

SFDI has been generated from the satellite datasets MCD-

12Q1 and ASTER GDEM datasets based on the historical fire 

hot spot (MCD14) data and Figure 2 shows the methodology 

adapted in this study. 

 

3.1. Historical Forest Fire Hotspot Data 

The MODIS TERRA and AQUA fire hotspot product MCD 
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Figure 1. Location of the study area - Uttarakhand state, India. 

 

 
 

Figure 2. Flow chart showing the methodology. 

 

Table 1. Description of Different Danger Levels 

S. No Normalized score (%) Name of the danger level Description 

1 <= 5 No fire Un favorable conditions 

2 5 ~ 10 Low Possible chances of fire 

3 11 ~ 15 Moderate Quite possible chances of fire 

4 16 ~ 20 High More favorable 

5 > 20 Very high Most favorable 

 

14 were downloaded for the study area Uttarakhand from 2010 

to 2014. The product consists of fire location information, date 

and time of acquisition, brightness temperature and Fire Radia-

tive Power (FRP) on each day. Grey Relativity Analysis has been 

used to evaluate the weights of each factor, influencing the fire 

danger. This method is an effective technique to solve the un-

certainty problems consists of distinct datasets with less infor-

mation (Chan and Tong, 2007; Zhai et al., 2009; Gai et al., 2011). 

3.2. LULC Danger Index (LULCDI) 

The MODIS land cover type product (MCD12Q1) pro-

vides five global land cover classification systems and also pro-

vides a land cover type assessment, quality control information 

(LPDAAC). International Geosphere-Biosphere Programme 

(IGBP) land cover type has been generated from MCD12Q1 

using HDF-EOS to GeoTiff conversion tool (HEG) software. 

The historical fire data were downloaded for the corresponding 
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Table 2. Fire Incidents in Different Landcover Classes of IGBP Classification  

IGBP classes 2010 2011 2012 2013 2014 

Evergeen needleaf forest 3 1 14 1 1 

Evergeen Broadleaf forest 0 0 4 3 0 

Deciduous Needleleaf Forests 0 0 0 0 0 

Deciduous Broadleaf Forests 0 0 2 0 0 

Mixed Forests 661 103 1378 180 757 

Closed Shrublands 7 2 5 1 4 

Open Shrublands 0 0 1 0 0 

Woody Savannas 216 35 397 66 223 

Savannas 0 0 0 0 2 

Grasslands 19 6 49 10 1 

Permanent Wetlands - - - - - 

Cropland 213 85 324 48 51 

Urban and Built-up 9 0 4 5 4 

Cropland/Natural Vegetation Mosaics 185 32 233 34 98 

 
Table 3. Fire Danger Level of Different Land Cover Types 

IGBP classes Normalized score (%) Danger level  

Evergeen needleaf forest 0.31 No danger  

Evergeen Broadleaf forest 0.21 No danger  

Deciduous Needleleaf Forests 0 No danger  

Deciduous Broadleaf Forests 0.02 No danger  

Mixed Forests 52.92 Very high  

Closed Shrublands 0.43 No danger  

Open Shrublands 0.01 No danger  

Woody Savannas 16.94 High  

Savannas 0.04 No danger  

Grasslands 1.74 low  

Permanent Wetlands 0.00 No danger  

Cropland 16.02 high  

Urban and Built-up 0.53 No danger  

Cropland/Natural Vegetation Mosaics 10.85 Moderate  

 

years (2010 ~ 2014) and these fires data were overlaid with the 

lGBP land cover type map to determine the type of land cover 

that are more vulnerable to fire. The percentage of fire incidents 

were calculated for each land cover type in each year so that 

the actual vulnerability of each land cover type has been deter-

mined during the fire season irrespective of the number of fire 

incidents. The mean of the percentages was calculated for the 

entire years and the danger levels were categorized into 5 types 

as shown in the Table 1. 

Table 2 shows the number of fire incidents in different 

land-cover classes of IGBP classification for the years from 

2010 to 2014. 

Percentage of fires were calculated in each year and the 

normalized score i.e. mean of percentage of all the years were 

calculated for each landcover type and shown in the Table 3 

and danger levels were assigned based on the Table 1. Figure 3 

showing the LULC danger index. 

 

3.3. Terrain Ruggedness Danger Index (TRDI) 

Terrain heterogeneity is an important parameter for descri-

bing the species diversity in the mountainous area. Terrain  

 
 

Figure 3. LULC danger index. 
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Table 4. Fire Hotspots Occurred in Different TRI Class Levels 

TRI index TRI class Year   
2010 2011 2012 2013 2014 

0 ~ 80 Level 552 308 1607 201 853 

81 ~ 116 Nearly Level 69 9 48 18 4 

117 ~ 161 Slightly Rugged 97 6 22 12 7 

162 ~ 239 Intermediately Rugged 167 36 365 47 72 

240 ~ 497 Moderately Rugged 425 95 858 97 316 

498 ~ 958 Highly Rugged 14 3 8 1 7 

> 958 Extremely rugged 0 0 0 0 0 

 

Table 5. TRI Danger Classes 

TRI Name of the class Normalized Score (%) Danger class 

0 ~ 80 Level 57.11 Very high 

81 ~ 116 Nearly Level 2.79 No danger 

117 ~ 161 Slightly rugged 2.63 No danger 

162 ~ 239 Intermediately rugged 10.25 Moderate 

240 ~ 497 Moderately rugged 26.66 Very high 

498 ~ 958 Highly rugged 0.56 No danger 

> 958 Extremely rugged 0 No danger 

 

Table 6. Fire Hotspots Occurred in Different Slopes 

Slope (degrees) Year 

 2010 2011 2012 2013 2014 

< = 3 221 118 275 92 93 

3 ~ 5 135 13 48 23 17 

5 ~ 10 116 9 61 18 28 

10 ~ 15 176 25 271 26 86 

15 ~ 20 183 18 276 17 142 

20 ~ 25 192 25 497 48 185 

25 ~ 30 160 27 443 67 153 

30 ~ 35 91 20 329 23 149 

35 ~ 40 26 5 126 7 73 

40 ~ 45 14 2 66 2 31 

> 45 9 4 21 2 10 

 

Ruggedness Index (TRI) provides an objective quantitative mea- 

sure of topographic heterogeneity and measured from digital 

elevation model (DEM) (Riley et al., 1999). It is the difference 

between the values of a cell and the mean of an eight neighbor-

hood surrounding cells. Terrain has been classified into 7 classes: 

Level, nearly level, slightly rugged, intermediately rugged, mo-

derately rugged, highly rugged and extremely rugged based on 

TRI values (Riley et al., 1999; Moreno et al., 2004) and the dan-

ger levels were assigned according to the procedure followed 

as in the fuel type danger index. Table 4 shows the number of 

fire points in different TRI class levels. Percentage mean was 

calculated for the years 2010 to 2014 as shown in the Table 5 

and fire danger classes were assigned based on their normalized 

score and Figure 4 shows the terrain ruggedness danger index. 

 

3.4. Topography 

Topography is an essential physiographic factor, which in-

fluences the wind speed and behavior and hence, affects the 

spreading of fire (Rothermel, 1983). Topography is the most 

stable factor of the fire triangle and easier to predict its influ-

ence on other factors weather and fuel. Topographic factors are 

slope, aspect and elevation. 

 

3.5. Slope Danger Index (SDI) 

Slope is the main factor in any fire danger analysis due to 

the fact that fire travels up slope faster than down (Chuvieco 

and Congalton, 1989; Jaiswal et al., 2002). In general, steeped 

slopes tend to increase the rate of fire spread as compared with 

flat surfaces or lower steeped slopes. In this study, historical 

fire data from 2010 to 2014 have been used to measure the 

slopes which are more vulnerable to fire. Table 6 shows the fire 

incidents occurred in different slopes of the study area. 

From the table 6, it is evident that a larger number of fire 

incidences occurred below 3 degree and minimum above 40 de-

grees, which is against the general hypothesis for the spread of 

fire (Chuvieco and Congalton, 1989; Dong et al., 2005; Rath-

aur, 2005). After the field visit to entire forests of Uttarakhand 

state, concluded that the higher litter content with driest condi-
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tion and longer time of sunlight received in down the slope 

were the main cause of the higher incidence of fires, this will 

support surface fires in the Uttarakhand Himalayas. Accessi-

bility is the main reason for the larger number of fires in the 

lesser slopes (< 3 degrees) as the humans can easily climb and 

ignite the fires either intentional or unintentional ways. Mean 

number of fire incidents calculated in each year for the above 

slope intervals and normalized to determine the fire danger le-

vels. Table 7 shows the danger levels were assigned to the dif-

ferent range of slopes and slope danger index was generated 

(Figure 5). 
 

 
 

Figure 4. Terrain ruggedness danger index. 

 

 
 

Figure 5. Slope danger index. 

Table 7. Fire Danger Levels for Different Range of Slopes 

Slope (Degrees) Normalized score (%) Danger class 

<= 3 22.08 Very high 

3 ~ 5 5.18 Low 

5 ~ 10 4.62 No danger 

10 ~ 15 10.17 Moderate 

15 ~ 20 10.39 Moderate 

20 ~ 25 15.68 High 

25 ~ 30 15.41 High 

30 ~ 35 10.10 Moderate 

35 ~ 40 3.75 No danger 

40 ~ 45 1.67 No danger 

> 45 0.94 No danger 

 

3.6. Aspect Danger Index (ADI) 

Aspect is the direction the slope faces and it determines 

the effect of solar radiation, moisture and air temperature (Chu-

vieco and Congalton, 1989). As the state Uttarakhand is in the 

Northern Hemisphere, where south facing slopes receive more 

solar radiation which results in lower humidity, less moisture 

and higher fuel temperatures creating suitable condition for ini-

tiation of forest fires. Fire incidents from 2010 to 2014 were 

used to compute the Aspect Danger Index. Aspect map of Utta-

rakhand was generated from the ASTER GDEM and catego-

rized into 10 classes viz. flat (-1), North (0 ~ 22.5), Northeast 

(22.5 ~ 67.5), East (67.5 ~ 112.5) Southeast (112.5 ~ 157.5), 

south (157.5 ~ 202.5), southwest (202.5 ~ 247.5), west (247.5 

~ 292.5), northwest (292.5 ~ 337.5) and north (337.5 ~ 360). 

Total number of fire incidents in each of the aspect classes were 

extracted for the period 2010 ~ 2014 during fire season. Table 

8 represents the total number of fire incidents in different aspect 

classes. 

 

 
 

Figure 6. Aspect danger index. 
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Table 8. Fire Incidents in Different Aspects 

S. No. Name of the aspect classes Year 

2010 2011 2012 2013 2014 

1 Flat 0 0 0 0 0 

2 North 40 8 115 9 53 

3 Northeast 120 12 250 21 89 

4 East 100 20 271 16 113 

5 Southeast 119 74 501 72 199 

6 South 340 74 501 72 199 

7 Southwest 346 75 495 105 169 

8 west 142 27 233 36 103 

9 Northwest 79 6 173 31 67 

10 North 34 6 78 6 40 

 

The total number of fire points were normalized into 1 to 

100 to estimate which aspect class was more susceptible to fire 

and the mean of normalized score was computed. Table 9 shows 

the mean normalized score and the corresponding danger levels 

and Figure 6 shows the generated aspect danger index. 

 

3.7. Elevation Danger Index (EDI) 

The variable elevation is considered as an important factor 

of forest fire because it influences the precipitation and temper-

ature. The weather is hot and moist in the sub-Himalayan zone 

and in river valleys below 600 m in elevation whereas the cli-

mate becomes sub-tropical up to the elevation of 1200 m. Ele-

vations of Uttarakhand were categorized into different ranges 

to know the vulnerability of forest fires. Table 10 shows the fire 

incidents occurred in different elevation ranges of the study 

area. 

 
Table 9. Aspect Danger Index 

S. No. Aspect 

degree 

Mean normalized 

score (%) 

Danger class 

1 Flat 0 No danger 

2 North 3.82 No danger 

3 Northeast 7.95 Low 

4 East 8.62 Low 

5 Southeast 11.29 Moderate 

6 South 23.53 Very high 

7 Southwest 25.06 Very high 

8 west 10.5 Moderate 

9 Northwest 6.39 Low 

10 North 2.82 No danger 

 

From Table 10, it was clear that maximum number of fires 

occurred in the elevation ranges from 0 to 1200 m above mean 

sea level, followed by elevation ranges from 1200 to 1800 m 

and less or very few fires in the ranges from 2700 to 3200 m, 

no fires in the altitudes above 3200 m. After the field visit, it 

was concluded that the anthropogenic activities were the main 

cause of occurrence of highest fire incidences in the elevations 

below 600 m and 600 to 1200 m; presence of pine forests are 

the responsible for highest number of fires in the elevation ranges 

1200 to 2400 m. There are lesser or no fires in the elevations 

greater than 2700 m because the climate is cold frigid. Number 

of fire points in each year were normalized into 1 to 100 and 

mean of all 5 years were calculated and danger levels were 

assigned based on the value. Table 11 represents the danger le-

vels assigned to different elevation ranges and the mean nor-

malized value. Figure 7 shows the elevation danger index. 
 

 

Figure 7. Elevation danger index. 

4. Results and Discussion 

The studies carried out by various researchers (Chuvieco 

and Congalton, 1998; Dong and Rathur, 2005; Orozco, 2008; 

Heikkila, 2010), danger levels were assigned randomly to each 

factor based on the hypothesis of forest fire spread without 

consideration of characteristics of the study area and historical 

fire records. In this study, danger levels were assigned to each 

parameter based on the historical occurrence of fire data. So, 

Analytical Hierarchical Process (AHP) method was used to 

calculate the forest fire risk in the above mentioned studies. In  
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Table 10. Fire Hotspots Occurred in Different Elevation Ranges 

Elevation Year 

2010 2011 2012 2013 2014 

0 ~ 600 308 53 308 68 148 

601 ~ 1200 546 130 786 148 296 

1201 ~ 1800 190 32 212 28 166 

1801 ~ 2400 192 28 242 77 312 

2401 ~ 2700 71 21 158 5 42 

2701 ~ 3200 17 3 9 0 0 

> 3200 0 0 0 0 0 

 

this study, weights were assigned to each parameter based on 

the historical fire occurrence. Therefore, Static Fire Danger In-

dex (SFDI) was developed by combining all the five individual 

danger indices i.e. LULC danger index, Terrain Ruggedness 

Danger Index, Slope danger index, Aspect danger index and 

Elevation danger index as each individual index was generated 

based on the historical fire incidents and the field observation.  

Therefore, Static Fire Danger Index (SFDI) was calculated 

by combining all the five individual danger indices i.e. LULC 

danger index, Terrain Ruggedness Danger Index, Slope danger 

index, Aspect danger index and Elevation danger index and Equ-

ation 1 shows the calculation of SFDI: 
 

SFDI LULCDI TRDI SDI ADI EDI      (1) 

 

The SFDI has been categorized into fire danger classes viz. 

no fire, Low, Moderate, High and Very high based on the Table 

12.  

 

Table 11. Elevation Danger Index 

Elevation (m) Mean of normalized score (%) Danger class 

0 ~ 600 19.46 High 

601 ~ 1200 42.37 Very high 

1201 ~ 1800 12.90 Moderate 

1801 ~ 2400 19.02 High 

2401 ~ 2700 5.67 Low 

2701 ~ 3200 0.59 No danger 

> 3200 0 No danger 

 

Table 12. SFDI Danger Classes 

S. No SFDI Danger level 

1 <= 5 No fire 

2 6 ~ 10 Low 

3 11 ~ 15 Moderate 

4 16 ~ 20 High 

5 > 20 Very high 

 

MODIS TERRA and AQUA active fire hotspot data (MC-

D14) during the fire season of 2015, 2016 and 2017 were down-

loaded from the FIRMS website and has been used to estimate 

the accuracy of the SFDI. MODIS active fire hotspots have 

been used for validating index the fire danger model in various 

studies as a proxy for the actual occurrence of fires (Chuvieco 

et al., 2008; Vadrevu et al., 2010; Maeda et al., 2011; Adab et 

al., 2013; Eskandari and Chuvieco, 2015). Similarly, in the pre-

sent study, MODIS active fire product MCD14 has been used 

for the validation for SFDI. Figures 8 ~ 10 showing the map of 

static fire danger index overlaid with active fire data of 2015, 

2016 and 2017. 

In most of the studies, accuracy was estimated based on 

the number of fire incidents fell in different fire danger classes 

(Vadrevu et al., 2009; Maeda et al., 2011; Adab et al., 2013; 

Sitanggang et al., 2013; Eskandari and Chuvieco, 2015; Akhtar 

and Hussain, 2011; Mitri et al., 2017). They counted the num- 

ber of fires fell in each fire danger classes and the classes 

“Low” and “Very low” classes were considered as “no fire is 

predicted”; the classes “High”, “Very high” and “Extreme” 

classes were considered as “a fire is predicted”. However, in 

this study, fires fell in “No fire danger”, “Low” and “Moderate” 

were considered as fire is not predicted and otherwise pre- 

dicted. 
 

 

Figure 8. Static fire danger index overlaid with fire hotspots 

of 2015. 
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Figure 9. Static fire danger index overlaid with fire hotspots 

of 2016. 
 

 
 

Figure 10. Static fire danger index overlaid with fire hotspots 

of 2017. 

 

Receiver Operating Characteristic (ROC) technique is used 

for the effective validation of developed SFDI. ROC repre-

sents the probability curve while, the area under ROC curve 

(AUC) represents the degree of separability between classes 

and also expresses the quality of a prediction model (Yesilnacar 

and Topal, 2005). If the value of AUC is close to 1, then the 

result of model is excellent, where as the result of model is 

fairer when the AUC is near to 0.5. 
 

 

 

 
 

Figure 11. ROC curves and AUC of SFDI for the years (a) 
2015, (b) 2016, and (c) 2017. 

 

From the Figure 11, it was evident that that accuracy is 

90%, 95.9%, 92.5% in the years 2015, 2016 and 2017 re- 

spectively. It was also observed that, AUC is ranging from 0.84 

to 0.916 i.e. the model accuracy is very good. The SFDI is gen-

erated by using the satellite derived datasets with a spatial reso-

lution of 1 km and will generate every year with the updated 
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MODIS land cover type product (MCD12Q1). Therefore, the 

Static Fire Danger Index accurately represents the distribution 

of fire danger over the study area. 

5. Conclusions 

Static fire danger rating index has been developed from 

the static parameters such as fuel type, slope, aspect, elevation, 

Terrain rugged index and danger levels have been assigned based 

on the historical fire occurrence data. MODIS TERRA and AQ-

UA Land cover type (MCD12Q1) and ASTER GDEM have 

been used in this study. Fuel type danger index was generated 

from the IGBP product, which was extracted from the datasets 

MCD12Q1. ASTED GDEM was used for the generation of 

Ter-rain Ruggedness Danger Index, Aspect Danger Index, 

Slope Danger Index, Elevation Danger Index based on the 

historical fire location data as well as ground investigation. The 

SFDI was computed by combining all the individual indices 

and validated with the fire incidents occurred during the years 

2015, 2016 and 2017. 

Accuracy of SFDI for the years 2015, 2016 and 2017 were 

90%, 95.9% and 92.5% respectively and AUC is ranging from 

0.84 to 0.916 i.e. accuracy of the developed SFDI is very good 

enough to predict the forest fire danger spread based on the sta-

tic characteristics of the study area. The developed methodolo-

gy is useful to generate SFDI every year by using the updated 

MODIS land cover type dataset MCD12Q1 with a spatial reso-

lution of 1 km. Thus, Static Fire Index is useful to understand 

the spatial pattern of fire occurrence in the study area and used 

to determine areas of high fire danger due to the fundamental 

conditions that leads to fire occurrence. The present study dis-

cusses about the calculation of static fire danger index based on 

the static factors responsible for fire danger. In future, Static fire 

danger index will be integrated with the dynamic fire danger 

index to generate the forest fire danger index of the study area 

so that fire danger maps can be disseminated to the forest offi-

cials to suppress the forest fires. 
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