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ABSTRACT. Phase Locked Loops are provided as a manner of assessing, monitoring and forecasting with seasonal or cyclical data. 

Phase Locked Loops using adaptive filtering were initially utilized for gravitational wave data analysis. In this paper we examine this 

implementation as an alternative approach for identifying the presence of one or more cycles in environmental data. Unlike most tech - 

niques for assessing seasonality phase lock loops can identify the presence of cycles without prior suspicion of their nature and existence. 

This is important for identifying either the initiation of new cycles or changes in existing cycles. As environmental data can be impacted 

by the presence of numerous cyclical phenomena and these cycles can change over time, this is a suitable and valuable technique. The 

technique can be used on existing data sets or assessing data streams. Phase Locked Loops are advantageous over many currently as the 

presence of multiple different cycles can be identified without prior suspicion and specification of the nature of the cyclicality of the data. 

The speed and parsimonious nature of the technique makes Phase Lock Loops ideal for Big Data and data flows that are so large that 

they must be assessed on a real time basis. The technique can manage and advise of changes in frequency, amplitude and phase shifts. 

The technique is illustrated utilizing weather data. 
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1. Introduction 

This paper addresses the need for techniques that are more 

adept at identifying the presence of cycles in existing environ- 

mental data bases and monitoring cycles in real time data feeds.  

In addition to considering the dimensions that are important to 

selection of the appropriate technique for cyclicality detection, 

monitoring and forecasting for a given application; the Phase 

Locked Loop is introduced and demonstrated as a tool for envi- 

ronmental informatics. The Phase Locked Loop is valuable for 

applications that benefit from parsimony, responsiveness and 

ease of use. The application of the Phase Locked Loop as a tech- 

nique for assessing cyclical patterns in data is illustrated through 

the consideration of weather data. As the technique can identify 

change in frequency and amplitude, phase transitions and the 

emergence/disappearance of new cycles, the technique has tre- 

mendous flexibility that is not captured by the example. 

Determining presence of cycles is not only important for 

the fundamental understanding of systems, but also for pre- 

scriptive reasons such as more accurate forecasting. The ex- 

istence and investigation of the presence of cyclical behavior 

is common in many fields primarily due to weather related ef-  
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fects, such as: flooding (Atiya et al., 1999; Marchi et al., 2010), 

climate change (Keating et al., 2003; Battisti and Naylor, 

2009), and health related issues (D’Amato et al., 1998; Thom- 

son et al., 2006). Often seasonality is used as an alternate no- 

menclature to cyclicality as a cycle is often defined by events - 

natural and/or social – that occur in a single calendar year. A 

variety of criteria are used for determining which technique is 

most suitable for measuring cyclicality, based on the ability to 

best satisfy the application under consideration. For measuring 

cycles, performance criteria include: (1) parsimony (how many 

cycles are required to identify a pattern), (2) responsiveness 

(the delay before a change in the cycle be identified), (3) re- 

sources (how much computing power is required for determi- 

nation, monitoring, and/or prediction), (4) ease of use (what le- 

vel of skill is required by user). These four criteria are best con- 

sidered on a case-by-case basis to offer guidance on which te- 

chnique is best used for a given application. 

Cyclicality is commonplace in environmental analytics – 

examples include air quality (Zhu et al., 2017), algal blooms 

(Lui et al., 2007), dissolved oxygen (Díaz and Rosenberg, 2011; 

Lee et al., 2013), disease outbreaks (Wang and Deng, 2012), 

hydrology (Banerjee et al., 2009; Svensson et al., 2015), ozone 

levels (Randriambelo et al., 2000), salinity (Hackert, et al., 2011), 

solar power (Lin and Pai, 2016), species cyclicality (Lloret et 

al., 2000; Jaksic et al., 2003), water temperature (Neetu et al., 

2012), water quality (DiDonato et al., 2009), wave power (Ayat, 
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2013; Rusu and Onea, 2013), weather (De Felice et al., 2015; 

Lusis, Khalilpour et al., 2017), and wind (Marvuglia and Me- 

ssineo, 2012). For these applications a variety of techniques can 

be utilized, including: seasonal decomposition, exponential 

smoothing methods, autoregressive integrative moving average 

models, transforms, grey forecasting, machine learning, kernel 

density and integrated techniques. The simplest case is that sea- 

sonality is suspected and the length of the cycle is known – 

usually daily, weekly or annual fluctuations – a Seasonal Mov- 

ing Average (SMA) can be calculated. The SMA is removed 

through the process of seasonal decomposition (de Livera et al., 

2011) to examine the behavior of the data once the seasonal 

effect has been removed. This technique requires a recognition, 

or suspicion, of the presence of periodicity in the data under 

consideration. There are other techniques that assist in identi- 

fying suspected seasonal variation. 

Holt Winters (triple exponential smoothing) allows for the 

detection and forecasting of both chronological and seasonal 

patterns (Taylor, 2008; Ilbeigi et al., 2017). Furthermore, Auto- 

Regressive Integrative Moving Average (ARIMA) models can 

be applied to detect seasonality of a known period – the Sea- 

sonal AutoRegressive Integrative Moving Average (Ediger and 

Akar, 2007; Schulzea and Prinzb, 2009). In fact, Box Jenkins 

(Box et al., 2013) can also be used for this purpose. Once again 

the length of the period must be defined.  

However, there are transforms that can detect the presence 

and periodicity of waves without prior knowledge of their exis- 

tence. While these approaches are helpful as they require no 

prior knowledge, more time, expertise and computational pow- 

er is required. While the Fourier and fast Fourier (Martens et 

al., 2002; de Livera et al., 2011) transforms are most frequently 

mentioned, other transforms such as wavelets (Choi et al., 2011; 

Bessec and Fouquau, 2018) and the Box-Cox transform (de 

Livera et al., 2011; Petropoulos et al., 2018) have also been 

utilized for wave characterization and forecasting. 

In addition, there are lesser used techniques such as Grey 

forecasting (Tseng et al., 2001; Xia and Wong, 2014) which is 

useful for dealing with seasonality when analysis is limited by 

very small data sets. Neural nets, machine learning and artifi- 

cial intelligence (Chu and Zhang, 2003; Venkatesh et al., 2014; 

Erişen et al., 2017) have also been utilized for wave characteri- 

zation and forecasting. Kernel density (Arora and Taylor, 2016) 

has also been used for detecting and modelling seasonality in 

data streams. Finally, some researchers have proposed the inte- 

gration of two different techniques to model seasonality. These 

combinations include: applying statistical and machine learn- 

ing (Tong and Liang, 2005) and evolutionary seasonal decom- 

position using a least-square support vector regression (ESDL- 

S-SVR) (Lin and Pai, 2016). 

Applications involving the detection, measurement, moni-

toring and forecasting of cyclicality can benefit from the per- 

formance characteristics of Phase Locked Loops. Phase Lock- 

ed Loops are ubiquitous workhorses in engineering and mea- 

surement with applications as diverse as automatic control 

(Hsieh and Hung, 1996), communications (Kazovsky et al., 

2006), gravitational wave detection (Aasi et al., 2015), and ato- 

mic force microscopy (Ruppert et al., 2016). 

The Phase Lock Loop is demonstrated as a technique for 

identifying and assessing cyclicality on temperature data for 

the Chicago O’Hare Airport. Temperature is an example of an 

environmental phenomena that involves multiple cycles occur- 

ring simultaneously – a daily and annual cycle. For many air- 

ports temperature readings that are both accurate and frequent 

are available for an extended period of time. Consequently, the 

data set is appropriate for demonstrating and testing a technique 

that sets out to identify, characterize and track cycles. 

Phase Locked Loops have been selected for applications, 

due to a strong fit between the performance characteristics and 

the needs of the application. In all cases, applications have ben- 

efited from some combination of the Phase Locked Loops per- 

formance characteristics. (1) Parsimony – Phase Locked Loops 

can quickly identify the underlying cycle(s) pattern based on 

either user specification or an automated search routine. (2) Re- 

sponsiveness – the Phase Locked Loop can quickly identify: 

changes in frequency, phase-shift of the cycle, or the appear- 

ance/disappearance of a cyclical pattern (3) Resources – the 

Phase Locked Loop requires much fewer calculations com- 

pared to many other techniques – such as fast Fourier trans- 

forms. When using a Fourier Transform to track a wave having 

a relatively stationary frequency, the computation time asso- 

ciated with an Fast Fourier Transform of N points of data is 

order N*log_2(N), where log_2 is the base-2 log. The Phase 

Lock Loop utilizes N operations to analyse N data points. In 

other words, it is a factor of log_2(N) faster than the Fourier 

Transform. In the case of 256 data points, the Phase Lock Loop 

is about 8 times faster and for 65,536 data points the Phase 

Lock Loop is about 16 times faster. Consequently, the initial 

processing and continued monitoring time is low. This is im- 

portant if reduced computing resources or energy consumption 

is considered important. (4) Ease of use – is provided as it is 

dependent on an already existing algorithm (Daw and Edo, 

2016). The search for and monitoring of multiple cycles simul- 

taneously can be automated. However, the option of the analyst 

using a Phase Locked Loop to interrogate data regarding the 

existence of specific cycles is also possible. The former ap- 

proach requires more initial set-up of the algorithm, but low 

skill requirements for continued use, due to automation. While 

the latter approach requires, a more sophisticated user.   

In the case of environmental informatics, the Phase Lock 

Loop is notable in that: (1) Easy to use – there is no need for a 

sophisticated knowledge of either mathematics or statistics to 

interpret the output. (2) Directed (theoretical) or nondirected 

(data-driven) use – can either verify the existence of a suspected 

cycle(s) or scan for the presence of unexpected cycles. For ex- 

ample, second-order effects. (3) Flexible – changes in ampli- 

tude, frequency or phase shifts are quickly identified and the 

Phase Lock Loop adjusts to continue tracking. While not valu- 

able for the weather example given in this paper, in the case of 

Levi flights or the impact of an unusual events an understand- 

ing of the presence and nature of change is valuable. (4) Re- 

source efficient – as low computational power is required for 

real time data analysis the Phase Lock Loop is useful for in-

field analysis where energy and computational power is limited. 
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The technique is also appropriate for assessment of very rapid 

data streams. Having considered the techniques typically used 

to assess cyclicality in business/management applications and 

summarized the performance characteristics of Phase Locked 

Loops, the Phase Locked Loop technique is considered. 

2. Method 

For detection and tracking of oscillations related to sea-

sons and cyclicality, a variant of the Phase Locked Loop tech- 

nique (Gardner, 2005) is used. A brief description of the me- 

thod is presented before consideration of application to real 

world problems. Consider input data consisting of a stream xn 

of real numbers, where n is an integer that increases with time. 

The data consists of samples from an oscillation, Xn = Ancos

(2 )n nf   + Sn. Here, An and fn are the amplitude and fre- 

quency of the wave,  is a phase offset at time zero, n is the 

time when the nth sample is acquired, and Sn is the background 

(Proakis and Manolakis, 1996), a combination of any remaining 

oscillations plus further broadband contributions such as noise. 

All parameters with an n subscript may exhibit sample-to-sam- 

ple variations, and it is the task at hand to deduce best estimates 

for these quantities. It is sometimes true that the data is regu- 

larly sampled, in which case we may write ,n sn  where s is 

a constant sampling period, the reciprocal of the sampling rate 

fs. 

The input data stream is applied to the following iteration 

algorithm:  
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The parameter w is a number in the range (0, 1) that deter-

mines a response time for the iteration algorithm to changes 

in the amplitude of the wave. The parameter n is the phase 

shift between the current and previous samples, so that 2n 

1( )n n nf    . In the case of regularly sampled data, w is given 

by /sw   and 2 .n n sf   Output from this iteration algori- 

thm is then further processed through matrix multiplication, 

resulting in two streams of processed data, referred to here as 

Dn and Qn, as follows: 
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where the elements of the matrix, Tab are functions of the 

parameters w and n . When the tracking algorithm is ‘locked’ 

onto the oscillation, fn is an estimate of the frequency of the 

oscillation, and the streams Dn and Qn form oscillations at the 

same frequency as the input oscillation being tracked. The con- 

tribution of the support Sn, is suppressed by a factor dependent 

on w. The ‘direct’ component Dn is in phase with the oscillation 

being tracked, and the 'quadrature' component Qn lags the input 

oscillation in phase by 90°. The algorithm therefore forms an 

orthogonal state generator (Daw and Edo, 2016) for the input 

oscillation. Orthogonal State Generators (OSGs) are important 

since it is the orthogonal state (a wave at the same frequency as 

the cycle in the data but out-of-phase with it), that is used to de- 

tect changes in frequency and phase. Other researchers have 

also developed OSGs using different techniques; see for exam- 

ple (Ciobotaru and Blaabjerg, 2006). 

The quantity En = (xn - Dn)Qn /An is employed as an error 

signal (Franklin et al., 1994) to sense departures of the frequen- 

cy of the oscillation from the previously estimated value fn The 

updated value of the frequency for the next iteration of the 

algorithm is given by: 

 

1 1n n nf GE f    (3) 

 

where G is a constant coefficient chosen so that the feed-back 

circuit adjusting the frequency is a second order loop critically 

damped with respect to step changes in cyclicity (Gardner, 

2005). The amplitude of the wave is given by 2 2

n n nA D D  . 

With the frequency tracking loop locked, the best estimate of 

the support, or the data with the tracked oscillation removed, is 

Sn = xn - Dn. Further oscillations forming part of the support can 

be tracked by using more than one loop applied to the data 

either in parallel or in series. This procedure can be applied to 

identify and simultaneously track numerous oscillations in the 

data, as has been in the case in the initial application the detec- 

tion of gravitational waves (Abbott et al., 2016).  

The algorithm utilizes an adaptive resonant filter to detect 

and track wave components of arbitrary data. A single free pa- 

rameter controls the time the filter takes to locate and lock on 

to a wave, the response time of the filter to changes in ampli- 

tude or frequency, and the bandwidth of the algorithm for in- 

cluding spectral features at neighboring frequencies. Multiple 

instances of the filter can run in parallel. The filter output can 

include a de-noised facsimile of the sine wave which can be 

subtracted from the data input to other instances of the filter. 

This cross-subtraction technique is used to break degeneracies 

between instances following sine waves whose frequencies are 

close together. 

The phase-lock loop is initialized with an initial guess fre-

quency. In the absence of intervening spectral frequencies, the 

approach of the frequency to the actual line frequency is expo- 

nential, with a time constant equal to twice the input timescale 

parameter, which is referred to as . If the sine wave subse- 

quently undergoes a step change in amplitude, the response to 

the change in amplitude is also exponential, and the time con- 

stant for the exponential approach is also . A longer is as- 

sociated with a narrower bandwidth B, related to by 1/B 

( ) . 

Higher bandwidth means that the frequency and amplitude 

estimate on the line from the algorithm will be noisier. There is 

therefore a trade-off between responsiveness and accuracy. A 

larger means it will take longer to acquire the correct sine 

wave parameters, but once acquired the parameters recon- 

structed will be more accurate, as long as the sine wave is suf- 

ficiently stable. A shorter will result in a more reactive track- 

ing algorithm, but the reconstructed parameters will be less ac- 
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curate. This is a challenge for data in management and business 

fields as it tends to be noisy and have a small number of cycles.  

3. Operationalizing Phase Locked Loops 

It is worth summarizing key characteristics that separate 

this technique from many of the other approaches to modelling, 

monitoring and forecasting cyclical data: 

(1) Ability to identify and track multiple waves simultane- 

ously – due to the high speed and low computing power 

requirements it is possible to search for and/or track many 

waves at the same time. The technique has successfully 

identified and tracked 15 separate waves simultaneously.  

(2) Ability to identify and track suspected waves – a specific 

period can be identified. Once lock on occurs, the Phase 

Locked Loop will adapt to phase shifts and changes in pe- 

riod. The system is able to report changes in behavior and 

identify instantaneous and ongoing deviations from ex- 

pected behavior.  

(3) Ability to search for waves when the period is unknown. 

This includes the ability to search for and detect the onset 

of new waves; the original purpose of the implementation 

of Phase Locked Loop algorithms described in this paper 

was to characterize and remove instrumental oscillations 

that were obscuring the signals from collisions of black 

holes (Abbott et al., 2016) and neutron stars (Abbott et al., 

2017) in the Laser Interferometer Gravitational-wave Ob- 

servatory (LIGO) gravitational wave detectors.  

(4) Ability to be used on big data problems involving the as- 

sessment of databases with large numbers of variables and 

observations, due to its high speed and low computing 

power requirements  

(5) Ability to be used on data problems that are so big that 

data is analyzed and summarized on a real time basis. 

This eliminates the need for data storage and provides 

insights onto changes in periodicity and behavior on a real 

time basis – delay at the millisecond order of magnitude. 

Important for management of real time data feeds. 

Having summarized the noteworthy features of Phase 

Locked Loops for identifying, monitoring and forecasting pe- 

riodicity, an assessment of weather data is now offered as an 

exemplar.  

For the purpose of demonstrating and/or testing a tech-

nique that assesses, monitors and/or predicts cyclical behavior, 

the dynamics of temperature change is useful as temperature 

has both a daily cycle and an annual cycle. Also accurate tem- 

perature data is readily available. For the purpose of illustration, 

weather data for a 10-year period for Chicago O-Hare airport 

was utilized (NOAA, 2017). The readings occur at least once 

an hour over non-even intervals (minimum and maximum in- 

tervals are 6 and 60 minutes). Consequently, the algorithm can- 

not place each reading into a separate bin of equal size for the 

purpose of simplifying calculation. Chicago O’Hare has a con- 

tinental climate but is influenced by its proximity to a large 

body of water – Lake Michigan – that can have a warming effect 

on the cold winds that blow from the north during the winter. 

The effect of sunlight on daily temperature gain is affected by 

the increased presence of overcast skies at times of the year in 

which the air temperature is cooling at a faster rate than the 

water temperature (typical in the fall and winter). 

The Phase Locked Loop algorithm was set to an initial as-

sumption of two separate cycles with a duration of one day and 

one year. Results are provided in Figures 1 to 6.   
 

 
 

Figure 1. Temperature for Chicago-O’Hare Airport 2007 ~ 

2017, inclusive (Source (NOAA, 2017)). 
 

 
 

Figure 2. Length of yearly period (cycle 1) estimated 

dynamically by the Phase Locked Loop algorithm 
 

 
 

Figure 3. Length of daily period (cycle 2) estimated 
dynamically by the Phase Locked Loop algorithm. 

 

 
 

Figure 4. Diurnal amplitude of the cycle estimated 

dynamically by the Phase Locked Loop algorithm. Initially 
amplitude is underestimated. 

 

The temperature variation is clearly cyclical with tempera-

ture near the end/beginning of the year much cooler – reaching 

lows of -20 degrees Celsius or less. While summer highs are 
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well over 30 degrees Celsius (Figure 1). The duration of the an- 

nual cycle quickly increases to over 368 days, but then attenu- 

ates at a value under 367 days (Figure 2). Similarly, the dura- 

tion of the daily cycle quickly increases and slightly overshoots 

the day duration never going beyond 1.002 days (Figure 3). 

However, unlike the annual cycle measurement, the daily cycle 

measurement shows evidence of an annual pattern with slight 

increases and decreases over time. Figure 4 illustrates the diur- 

nal amplitude of the temperature during the period under consi- 

deration. The amplitude drops to close to 1 degree Celsius at 

the end/start of a year and increases to about 4 degrees Celsius 

for the summer period. Figures 5 and 6 consider the error for 

the yearly and daily cycle, respectively. Error is much higher 

at the start of the training period, reflecting the instability noted 

on the other graphs. Also worth noting is that the error is much 

higher when considering the cyclical prediction of daily data, 

rather than that of annual data. Having provided two illustra- 

tions of cyclical data – mortality (a single annual cycle) and 

temperature (a daily and an annual cycle). The implications that 

this technique has to theory and practice is now considered.  

 

 
 

Figure 5. Measure of error for annual cycle estimated 

dynamically based on Phase Locked Loop estimation of the 
appropriate value. 

 

 
 

Figure 6. Measure of error for daily cycle estimated 

dynamically based on Phase Locked Loop estimation of the 
appropriate value. 

4. Discussion 

4.1. Implications to Theory  

The use of Phase Locked Loops for assessing the presence 

of one or more cyclical patterns is an example of where a tech- 

nique developed for the unique needs of fundamental research 

potentially provides many applied benefits. While the opportu- 

nity to harvest non-scientific value from fundamental research 

are abundant, they are often overlooked. In this particular case, 

the unusual fundamental science requirement is the tracking 

and filtering out a large number of waves from a sensitive dete- 

ction device so that the wave resulting from the conversion of 

matter into energy (empirical validation of the relation E = mc2) 

as a result of either the collision of black holes or neutron bi- 

nary stars can be recognized and characterized. While this fun- 

damental contribution is worthwhile on its own as an important 

scientific discovery including being awarded the 2017 Nobel 

Prize in Physics, seemingly unusual requirements associated 

with this project and other fundamental science activities can 

also provide significant benefits to better characterizing, moni- 

toring, and forecasting environmental data.  

As a technique it offers some significant advantages. Like 

transforms or machine learning, Phase Locked Loops do not 

require that the analyst has prior knowledge or suspicion of the 

nature of the cyclicality that may exist in the data. Similarly, 

the Phase Locked Loop can identify multiple cycles in a single 

data set. However, this is accomplished with the use of much 

lower computational power. The result is a fast and parsimo- 

nious use of processing power allowing for the exploration of 

large data sets for relationships that may provide useful insights.  

If the analyst has a suspicion of the presence of cyclical 

behavior, initial estimates can be set to reflect these perceptions 

resulting in faster convergence. However, the analyst can also 

set a number of Phase Locked Loops to actually search for the 

either presence of unanticipated cycles or the initiation and 

emergence of new cycles. As the Phase Locked Loop locks 

onto a cycle, all changes in the cycle are reported: amplitude, 

phase shifts, changes in frequency and cycle termination. In 

this respect, the Phase Locked Loop is superior to other tech- 

niques used to model and forecast cyclical behavior in business, 

management and related fields. While the Phase Locked Loop 

is not being proposed as a replacement for the existing techni- 

ques used to measure seasonality and cyclicality, it is an impor- 

tant discovery as its parsimonious nature makes it ideal for big 

data and/or continuous data streams.  

 

4.2. Implications to Practice 

As the availability of inexpensive sensors and memory in-

creases, the challenge of data overload is increasingly problem- 

atic. Consequently, techniques that can be used to assess and 

find relationships are of increasing importance. Especially im- 

portant are techniques that require minimal time and/or com- 

puting power. 

The movement towards the interconnection of equipment 

and sensors through the Internet of Things is further increasing 

the real time flow of data. For many applications the detection 

and monitoring of cycles in situ or remotely can be of assis- 

tance.  

5. Conclusion 

Phase Locked Loops offer a parsimonious flexible tech-

nique to identify the presence of one or more cycles in a data 

stream. Through its initial use in identifying gravitational waves 

resulting from the collision of two black holes, the technique 

has been found to be able to identify, characterize and track 15 

cycles simultaneously. In addition to identifying phase shifts, 

changes in frequency, changes in amplitude, the Phase Locked 
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Loop can identify the emergence of additional cycles in a data 

stream. The Phase Locked Loop has been demonstrated on 

weather data illustrating the speed of convergence and the 

nature of the output. As Phase Locked Loops can respond to 

changes in the nature of a cycle that occurs in less than a 

millisecond, the technique can not only be used for the rela- 

tively static data sets utilized as examples, but also for dynamic 

real time data. 
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