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ABSTRACT. The optimization of a modular expansion strategy, while extremely relevant in the industrial setting, requires sophisticated 

numerical modeling for the valuation of even simple scenarios. In this work, we develop both a numerical model and a model based on 

Monte-Carlo simulation utilizing real options, to provide a methodology for optimizing a plant expansion strategy. Our case study is as-

sociated with a wastewater treatment plant expansion; however, the methodologies developed here can be extended to many industrial 

settings, including mining, oil and gas, and manufacturing. The value of the Monte-Carlo simulation is that it is much more easily under-

stood by practitioners and more versatile in that it can be used to model non-standard processes. The results of both of our models match 

consistently, essentially validating the Monte-Carlo technique. 
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1. Introduction 

Decision makers are often faced with the task of deciding 

on the design capacity of capital asset investment projects. Typ-

ically, discounted cash-flow (DCF) models are used for analy-

sis leading to rough estimates of optimal asset size. The ability 

for managers to react to uncertainties at a future time adds value 

to projects, and since this value is not captured by standard DCF 

methods, erroneous decision making may result (Trigeorgis, 

1996). Real option analysis (ROA) is recognized as a superior 

method to quantify the value of real-world investment opportu-

nities where managerial flexibility can influence their worth, as 

compared to standard DCF methods. ROA stems from the work 

of (Black and Scholes, 1973) on financial option valuation. 

Myers (1977) recognized that both financial options and pro-ject 

decisions were exercised after uncertainties were resolved. Early 

techniques therefore applied the Black-Scholes equation di-

rectly to value put and call options on tangible assets (Brennan 

and Schwartz, 1985). Since then, ROA has gained significant 

attention in academic and business publications, as well as text- 

books (Trigeorgis, 1996; Copeland and Antikarov, 2001). An 

excellent empirical review of expost investment decisions made 

in copper mining showed that fewer than half of investment 
timing decisions were made at the right time and 36 of the 51 pro- 
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jects analyzed should have chosen an extraction capacity of 

40% larger or smaller (Auger and Guzman, 2010). The authors 

were unaware of any mining firm basing all or part of their de- 

cision making on the systematic use of ROA and emphasize 

that the “failure to use ROA to assess investments runs against 

a basic assumption of neoclassical theory: under uncertainty, 

firms ought to maximize their expected profits”. They make the 

case that irrational decision making exists within the industry 

due to a lack of real option tools available for better analysis. A 

recent review of the use of real option analysis for infrastruc- 

ture projects concluded that the use of real options arises due 

to the need for a new approach to infrastructure management 

and valuation, since the DCF method does not allow one to cap- 

ture the value of flexibility (Martins et al., 2015). In their work, 

they evaluate a number of leading approaches used for real op- 

tions valuation. They note a number of advantages of using 

Monte-Carlo simulation for ROA as the approach is considered 

to be user-friendly and provides results that are simple to explain 

to the decision makers. Other studies also support the use of 

Monte Carlo simulation in ROA (Benedetti et al., 2005; Ferrer 

et al., 2008). 

In this paper, we consider the problem of optimizing the 

size of a modular wastewater treatment plant. As one of the most 

capital-intensive industrial sectors in North America, the envi-

ronmental water and wastewater sector faces a significant need 

for near future capital investment. According to the Federation 

of Canadian Municipalities, in 2007, a total of $31 billion was 

needed for refurbishment of existing systems and $57 billion was 

needed for replacing existing systems and constructing new ones. 
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Figure 1. Depiction of the timelines for the plant expansion. 
 

 
 

Figure 2. Depiction of the numerical model. 

 

The Conference Board of Canada reported that the average 

capital expenditures in municipal water and wastewater have 

reached $1.5 billion annually from 1998 ~ 2006, with the capi-

tal expenditures in 2006 being close to $2.4 billion for the whole 

country (Public-private partnerships in Canada, 2013). Although 

some advanced water treatment technologies have been devel-

oped and put into use in municipal systems, capital and research 

expenditures are being held back in the sector due to restricted 

margins and regulated pricing leading to suboptimal returns 

(Global Cleantech Center, 2013). More recently, the Canadian 

Infrastructure Report Card (CIRC, 2019) emphasized that the 

state of the Canadian infrastructure is at risk with a majority of 

the infrastructure that Canadians rely on every day being more 

than 20 years old. Clearly, better capital asset allocation strategies 

in the water and wastewater sector can significantly improve cap-

ital expenditure efficiency and allow more capital to be invested 

in the research and development of better treatment technologies.  

A single stage “real option” approach that copes with fu-

ture demand uncertainties for wastewater treatment plant expan-

sion was first developed by (Lawryshyn and Jaimungal, 2010), 

who modeled the growth in demand for a residential waste-

water treatment as a geometric Brownian motion (GBM) that is 

partially correlated to an appropriate traded market index. Their 

model transformed expected future penalty costs for waste-

water connections as an asian option with the expansion size 

being the strike price. The finite difference method was used to 

numerically solve for the capital needed to fund the single stage 

expansion. Lawryshyn and Jaimungal further developed a closed 

form approximation to the modular expansion problem. The 

modular expansion model allows a second-time expansion of 

the plant at a pre-defined future date. Their results showed that 

a modular expansion requires significantly less up-front capital 

investment, and the overall expected expenditures were reduced 

compared to the single-stage expansion model (Lawryshyn and 

Jaimungal, 2014). However, the modular expansion model de-

veloped by Lawryshyn and Jaimungal can only account for a 

single expansion at a pre-fixed future date, which limits the ap-

plicability of the model in practice. 

In the model developed here, the pre-fixed expansion date 

is relaxed, i.e., the second stage expansion is modeled in such 

a way that it can be carried out at any point after initial expan-

sion. This is accomplished by utilizing a combination of the fi-

nite difference method and the analytical approximation devel-

oped by (Lawryshyn and Jaimungal, 2010). The result is that a 

more realistic future expansion strategy is modeled. However, 

the resulting model may still be considered somewhat math- 

ematical in nature and too complicated for practicing engineers/de-

cision makers. Thus, a practical, easy to understand Monte-Carlo 

simulation approach was also developed. An important adven-

tage of the Monte-Carlo model is its flexibility to model other 

stochastic processes regarding the plant demand. Results ob-

tained by using both methods are compared and found to be sim-

ilar to each other. 

2. Materials 

In this section, we present the methodology utilized in our 

models. First, we present the project background, which has its 

roots in the work of Lawryshyn and Jaimungal (Lawryshyn and 

Jaimungal, 2010, 2014). Next, we formulate our model utilizing a 

partial differential equation (PDE) coupled with an analytical ap- 

proximation to develop the valuation. In the last section we present 
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our model using Monte-Carlo simulation. While the simulation 

relies on least squares Monte-Carlo (LSMC) techniques, the mod- 

el is much more intoitive and will likely be more readily accepted 

within the industry.  

 

2.1. Project Background 

The objective of the model presented in this paper is to de-

termine the optimal sizing of a wastewater treatment plant (WWTP) 

for a municipality that is undergoing high but uncertain growth. 

Currently, the existing plant has limited capacity and a decision 

is required regarding the size of the current expansion and the 

maximum total potential capacity after a second, future expan-

sion, is made. Plant construction is expected to take just under 

2 years and the total plant life is estimated to be 25 years. An 

undersized plant will lead to significant overflow penalty costs 

while an oversized plant may show poor performance and will 

also require significant up front capital costs that may be diffi-

cult to recoup if significant population expansion is not realized. 

Clearly, a staged design of the plant expansion can help the 

municipality to reduce the cost of an initial over-design yet still 

allow for the option to expand, if significant population growth 

is realized.  

There are four phases involved in the two-stage expansion 

of a WWTP project (see Figure 1):  

 Phase 1: a decision on the first module size will be made 

at time t0 and construction will take place for the first mod-

ular plant from time t0 to time t1. 

 Phase 2: the operation of the first modular plant starts from 

time t1; after time t1, the municipality has the option to ex-

pand the wastewater treatment plant at any time t2 if neces-

sary. 

 Phase 3: if necessary, construction of the second module 

will begin at t2, ending at t3. 

 Phase 4: the operation of the second module will take place 

from time t3 to T. 

Following (Lawryshyn and Jaimungal, 2010 and 2014), we 

assume that the expansion rate fol-lows a GBM, that is correlated 

to a traded security (market index). The price of the security 

also follows a GBM process: 
 

t S t S t tdS S dt S dW    (1) 

 

where µs and σs are constants representing the drift and volatile-

ity, respectively and Wt is a Wiener process. Similarly, the con-

nection rate (expansion rate) is modeled as: 
 

 21t X t X t t tdX X dt X dW dW         (2) 

 

where µX is the drift and σX is the volatility, ρ is the correlateon 

and
tW  is another Wiener process, independent of Wt. Under 

the risk-neutral measure, the connection rate becomes: 
 

 21t t X t t tdX rX dt X dW dW      %  (3) 

where: 

 

 X
X S

S

r r


 


    (4) 

 

r is the risk-free rate and tW% is an equivalent process to Wt under 

the risk-neutral measure. The market parameters are presented 

in Table 1. 

The total number of connections at time t is given by: 
 

0

0

t

t uN N X du    (5) 

 

And defining the penalty cost associated with a lack of 

capacity as: 
 

  0max 0,t tPC N K PC    (6) 

 

Leads to the following present value of the penalty cost 

incurred from time t to T: 
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where PC0 is the penalty cost rate associated with insufficient 

plant capacity per connection, and K is the size of the plant ex- 

pansion. (Lawryshyn and Jaimungal, 2014) provided an analyt- 

ical approximation for Equation (7) as: 
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where Φ is the standard normal cumulative distribution function: 
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Figure 3. Construction boundary plots for the Numerical Model (a) and the Monte-Carlo Simulation (b) at t = 22y. Blue 
designates construct. 
 
Table 1. Market Parameters 

Parameter Value 

Market drift, μS 10% 

Market volatility, σS 16% 

Connection rate drift, μX 8% 

Connection rate volatility, σX 5% 

Correlation factor, ρ  0.5 

Risk free rate, r 2% 

 
Table 2. Construction Cost Parameter Values 

Parameter Value 

Module 1 fixed cost, α1 $3,500,000 

Module 2 fixed cost, α2 $525,000 

Module 1 variable cost 1, γf $860/connection 

Module 1 variable cost 2, γ12 $172/connection 

Module 2 variable cost, γ2 $757/connection 

 

Or, in the case where we are interested in a filtration tF , 

where τ ≤ t, Equation (8) can be written as: 
 

, ; | ~PV

t T K tE PC 
 

% F  

, ,

0 , ; , ;( ( ) ( ) ( ))u u
T

ru

u u
t

PC e e X d K N e d du 

   

 

     
% %

 (13) 

 

Lawryshyn and Jaimungal (2014) modeled the expansion 

costs with fixed and variable components as: 

 

 1 1 2 1 1 1 12 2, max maxC K K K K      (14) 

 

For the first expansion and: 

 

 2 2 2 2 2 2maxC K K K     (15) 

 

For the second, where K1 is the size of the first expansion, 

K2 is the size of the second expansion, K2max is the maximum 

size for the second expansion and α1, α2 are positive coeffi-  
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Figure 4. Construction boundary plots for the Numerical Model (a) and the Monte-Carlo Simulation (b) at t = 2y. Blue designates construct. 
 

cients associated with fixed construction cost, and γ1, γ2 and γ12 

are positive coefficients associated with variable construction 

cost. The cost parameter values are presented in Table 2. 

Throughout the models, X0 is assumed to be 81 connections per 

year and N0 is assumed to be -200 connections (i.e., the current 

plant capacity is for 200 connections). 

Lawryshyn and Jaimungal (2014) showed that at some time 

t* the optimal second state expansion size can be determined 

by: 
 

  *

* *
1 2 2max

2
2 2 2 , ; min ,

min ( )
const

Opt PV rt

t t T K K K tK
K C K E PC e

 

  
  

% F (16) 

 

where tconst is the time required for construction of the expan-

sion. Equation (16) will be used extensively in the numerical 

model for determining the optimal strategy at each decision point. 

It should be noted that Equation (16) could also be used in the 

Monte-Carlo simulation to reduce computational time, however 

in view of the fact that one of the objectives was to develop a 

model purely based on Monte-Carlo simulation, a technique 

much more readily accepted by practitioners, a different opti-

mization algorithm was utilized. In the following subsection, 

the numerical model methodology is presented and in the sub-

sequent one, the Monte Carlo model is developed. 

 

2.2. Numerical Model 

Defining νt as the total cost of the plant and recognizing 

that ν(t, Xt, Nt), applying Ito’s lemma and standard arguments 

leads to the following PDE: 

 
2

2 2

2

1

2
x

v v v v
rx x x rv

t x y x


   
   

   
 (17) 

 
where the dummy variables x and y were used to replace Xt and 

Nt, respectively. We note that the same PDE was developed in 
(Lawryshyn and Jaimungal, 2010), however, the boundary con- 

ditions in this case are different. Specifically, we assume con- 
stant slope as follows: 

 

maxx x

v
constant
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 (18) 
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miny y

v
constant
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 (20) 

 

And, 
 

     0, 0, , 0ru

tv t y PC e E max N K T t     
%  (21) 

 

As discussed previously, we assume that the managers 

have the option to expand the plant at any time after initial con- 

struction is completed during the life of the plant and decisions 

are made on an annual basis only. However, since the construc- 

tion time of the second expansion is just under two years, it 

makes no sense to expand at year 244. Thus, a decision regard- 

ing the size of the modular expansion is required at times 2 

years to 23 years. Thus, at t = 23, we utilize Equation (16) to 

determine the optimal expansion size,
, 23

2

Opt tK 
. Next, we need 

to compare the cost of constructing and incurring the new (re- 

duced) penalty cost where the plant size is now , 23

1 2

Opt tK K 

versus not constructing and incurring the penalty cost given the 

plant size of K1. Utilizing Equations (13) and (15) we can cal- 

culate the expansion strategy cost at t = 23 as: 
 

    , 23
1 2

, 23

23 2 2 23, ;
, Opt t

ES Opt t PV

t t t t T K K
C X N C K PC 



  

  
 

%E  (22) 

 

The no construction cost at t = 23 is simply: 
 

 
123 23, ;,NC PV

t t t t T KC X N PC 
   

%E  (23) 

 
And therefore for the boundary condition for ν becomes: 

 

      23 2323, , min , , ,NC ES

t t t t t t t tv t X N C X N C X N    (24) 

 

The next decision time point is at year 22, thus we utilize 

Equation (17) to determine v(t = 22, Xt, Nt). At this point, we 

compare the expansion strategy cost to ν as of this time. Thus, 

we have: 
 

    , 22
1 2

, 22

22 2 2 22, ;
, Opt t

ES Opt t PV

t t t t T K K
C X N C K PC 



  

  
 

%E  (25) 

 

And: 
 

   22 , 22, ,NC

t t t t tC X N v t X N    (26) 

 

And ν is updated as: 
 

      22 2222, , min , , ,NC ES

t t t t t t t tv t X N C X N C X N    (27) 

 

The methodology is repeated until t = 2y, after which 

Equation (17) is utilized to find the cost at t = 0. This procedure 

was run with different K1 and K2max values to determine the 

optimal initial construction size and maximum modular expan- 

sion size. A depiction of the numerical model is presented in 

Figure 2. 

 

2.3. Monte-Carlo Simulation 

The Monte Carlo simulation methodology requires that we 

form a grid of starting values for Xt and Nt at each decision mak-

ing time point, i.e., as before, t = 2, 3…, 23 years. Starting at t 

= 23y, for each grid point (i, j) we simulate Xt from t = 23y to 

t = T, for N paths and thus we arrive at a Mpath× Mtime matrix, 

where Mpath is the number of paths (per grid point) and Mtime is 

the number of time steps for the simulation (at t = 23 we would 

be simulating until t = T = 25y, so Mtime = (25-23)/dt), ,

23, .i j

t TX  

Integrating, it is then possible to determine the number of new 

connections, ,

23,

i j

t TN , where the k-th, l-th element of this ma- 

trix is given by: 
 

, , ,

23, 23 23,, ,
1

l
i j i j i j

t T t t Tk l k m
m

N dt  



 N X  (28) 

 

And where dt is the time step in the simulation. Thus, for any 

total plant size K the present value of the penalty cost for each 

simulation path is given by: 
 

     , r ,

23, 023, ,
1

e max , 0
time

m

M
i j t t i j

t Tt T k mk
m

K K PC dt
 




  PC N  (29) 

 

where  
,

23,

i j

t T
K


PC is a vector of length Mpath, and the expected 

penalty cost is given by averaging the vector so that: 
 

   
, ,

23, 23,
1

1 pathM
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For the case of no construction, at t = 23, we have: 
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23 1 23

i jNC i j
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  (31) 

 

Next, for the case of expansion, we simplify our problem 

slightly, by assuming a discrete number of possible modular ex-

pansion sizes are available, i.e.,  1 2 3

2 2 2 2 2

nK K K K K  , and 

calculate the expansion cost strategy as: 
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Thus, the value of the cost at each grid point is calculated as: 
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23 23 23min ,i j NC i j ES i j

t t tv C C    (33) 
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Figure 5. Total cost value plots for the Numerical Model (a) and the Monte-Carlo Simulation (b) at t = 0. 
 

At the next expansion decision point, t = 22, we consider 

two scenarios: the case of no construction and the case of con-

struction. In the case of no construction, we simulate Xt from t = 22y 

to t = 23y to get ,

23,

i j

t TX and ,

23,

i j

t TN . We apply Equation (29) 

to find  
,

23,

i j

t T
K


PC . Then, for each end point ,

22, 23 , time

i j

t k MX and
,

22, 23 , time

i j

t k MN , we use linear interpolation to determine the value 

of , , ,

23 22, 23 22, 23, ,
( ).,

time time

i j i j i j

t t tk M k M
v   X N Thus, the cost for no con- 

struction becomes: 
 

; , ,

22 23

1

1
( ( ) |

pathM

NC i j i j

t t k

kpath

C PC K
M

 



   

 23 22, , ,

23 22,23 , 22,23 ,,( | | ) )
time time

ri j i j i j

t t k M t k Mv e
 

   X N  (34) 

 

For the expansion strategy, we proceed as before, with the 

key distinction that we simulate Xt through the entire remaining 

time domain, such that we calculate
,

23,

i j

t TX and
,

23,

i j

t TN and 

utilize Equation (32) to determine ( ; , )

( 22)

ES i j

tC  . Then, Equation (33) is 

used to determine ,

22

i j

tv  . The methodology continues in a recur-

sive fashion to t = 2y. For t = 0 to 2y we simply simulate Xt, 

determine Nt for each path, calculate the interpolated value of 

νt = 2 for each case, discount to t = 0 and calculate the average 

to find the final value. 

3. Results 

In this section we provide some of the key results of apply-

ing the two methods. In particular, we provide a comparison 

between the Numerical Model (NM) and the Monte Carlo Si- 

mulation (MCS). Figures 3 and 4 show the construction boun- 

daries for both the NM and MCS at years 22 and 2, respectively. 

As can be seen, the two methodologies provide similar results. 

For the case where t = 2y (Figure 4), the MCS boundary looks 

slightly different because of the coarser discretization. In Fig- 

ure 5 we plot the total cost value function as of t = 0. Again, 

we see that the results are very similar and an error analysis 

showed a difference of less than 5% for all calculated values 

between the NM and MCS. Finally, in Figure 6 we provide a 

plot of the total cost as a function of K1 and K2max. This plot can 

be used by the decision makers to optimize their plant expan- 

sion strategy. 

4. Conclusion 

Municipalities that face uncertain growth can benefit by 

adopting decision making strategies that consider modular ex-

pandable design for certain capital investment projects. As we 

discussed above, the environmental water and wastewater sec- 
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Figure 6. Total cost as a function of K1 and K2max.  
 

tor faces a significant need for near future capital investment. 

Utilizing size modularity in a wastewater treatment plant devel-

opment or expansion includes both operational and financial 

benefits. While financial models that use ROA are known to pro-

vide better decision making results than standard models based 

on DCF analysis, the mathematical complexities associated 

with even simple scenarios sometimes render ROA modeling 

an academic exercise with little real world applicability. In this 

work, we developed a framework to determine the optimal tim-

ing and sizing of a two-stage wastewater treatment plant expan-

sion project using two ROA methods, namely 1) a numerical 

model that requires the solution of a PDE and 2) a model based 

on Monte-Carlo simulation. The results of the two models showed 

very good agreement. The numerical model has significant con-

straints in applicability for real world decision making as it will 

likely not be easily understood by decision makers and it lacks 

the flexibility required to model practical scenarios. However, 

it is a model that is considered to be technically correct and we 

showed that our more practical simulation based model provides 

similar results to the numerical model. We thus, have in essence 

validated our simulation modelling approach. Thus, the simula-

tion methodology presented here can easily be extrapolated to 

model more realistic scenarios. Furthermore, the model is into-

itive, making it significantly more tractable with decision makers. 

While the application we presented here was in the context 

of a wastewater treatment plant capital investment, the meth- 

odology can easily be expanded to other capital investment de-

cision making scenarios related to environmental technologies, 

especially where future demand may be growing but uncertain. 

For example, consider the case of utilizing wind or solar energy 

within a growing but uncertain demand context. The option to 

secure appropriate land today and install limited capacity with 

the potential for future expansion can be modeled using the ap-

proach presented here. Furthermore, the extension of the ap-

proach to multiple staged expansions is relatively straightfor-

ward. There is significant literature that presents the merits of 

utilizing ROA for decision making (Trigeorgis 1996, Auger and 

Guzman, 2010) and optimizing modular design within the envi-

ronmental framework could produce significant benefits. The 

methodology presented here strives to fill the gap for assisting 

with environmental decision-making applications. 
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