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ABSTRACT. Various components within environmental decision-making problems often contain considerable uncertainty. Monte Carlo 

simulation approaches have frequently been used to incorporate a wide array of this uncertainty into environmental planning. Simulated 

outputs summarizing these uncertainties are commonly portrayed in the form of probability distributions. Visualization of the disparate 

uncertainties within these distributions is a key aspect for effective decision support in Monte Carlo analysis. This study contrasts the 

performance and benefits of two visual analytics tools – overlay charts and simulation decomposition. Overlay charts enable the display 

of multiple sources of uncertainty overlaid on top of each other in a single graphical representation and come as a standard feature in 

numerous commercial Monte Carlo software packages. Conversely, simulation decomposition combines user -defined sub-distributions 

of the simulation uncertainties and collectively displays them in a combined graphical output figure. This paper contrasts the efficacy of 

overlay charts versus simulation decomposition for the visual analysis uncertainty into the environmental decision-making process. 
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1. Introduction 

Effective environmental decision-making frequently proves 

to be a complex, challenging process (Loughlin et al., 2001; 

Janssen et al., 2010) in which the final solutions often feature 

political, socio-economic, and environmental aspects that are 

inherently subjective (Loughlin et al., 2001; Zechman and Ran- 

jithan, 2004). Although certain components may be articulated 

clearly, typical environmental decision-making problems pos- 

sess modelling specifications that cannot be directly incorpo- 

rated into the underlying decision support process (Hipel and 

Ben-Haim, 1999; Mowrer, 2000; De Kok and Wind, 2003; 

Brugnach et al., 2007; Matthies et al., 2007; Fuerst et al., 2010; 

Hipel and Walker, 2011; Castelletti et al., 2012; Lund, 2012; 

Walker et al., 2012; Deviatkin et al., 2020). Environmental 

decision-making can be further compounded in circumtances 

where stochastic uncertainties are prevalent (Baetz, 1990; Yeo- 

mans, 2008; Gunalay et al., 2012; Farr et al., 2016; Han et al., 

2017; Kozlova and Yeomans, 2019).  

Monte Carlo methods have been integrated into a variety 

of environmental contexts to incorporate these uncertainty is- 

sues (see, for example: Openshaw and Whitehead, 1985; Ridle- 

hoover, 2004; Byer and Yeomans, 2007; Byer et al., 2009; Byer 

et al., 2011; Vithayasrichareon and Macgill, 2012; Kim et al., 
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2013; Farr et al., 2016; Han et al., 2017). An effective simu- 

lation analysis should capture not only the ranges of realistic 

possible outcomes, but also the distributional nature of how the 

identified risks actually “behave” between identified extremes 

(Byer et al., 2011; Kleijnen, 2018; Kozlova and Yeomans, 2019). 

Monte Carlo simulation can convey the potential impacts on di- 

fferent systems based upon the likelihoods of certain events 

(Byer and Yeomans, 2007; Byer et al., 2009). Since the result- 

ing outputs are best articulated graphically as probability distri- 

butions, simulation output generally displays a more nuanced, 

visual portrayal of system performance than that of a single, 

deterministic value (Kleijnen, 2018).  

While simulation integrates stochastic behaviours into the 

modelling, it provides no prescriptive mechanism that actually 

creates system solutions. Hence, all key conclusions revert to the 

decision-makers studying the uncertainties embodied by the dis- 

tributional outputs (Byer et al., 2009). Although Monte Carlo si- 

mulation has been applied to wide spectrum of problems (Law 

and Kelton, 2000), the approach to its output analysis has re- 

mained comparatively static (Kleijnen, 2018). Typically, si- 

mulation-created output distributions are portrayed in the form 

of histograms and, therefore, visualization becomes an impor- 

tant decision-making component when the models contain mul- 

tiple sources of uncertain variable interaction. Visual analytics is 

the graphic representation of data to analyze, process, uncover, 

and communicate relationships among the represented data. 

Perhaps the most prevalent visualization tool available in 

commercial Monte Carlo software packages is the overlay chart. 
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Overlay charts enable the simultaneous viewing, comparison, 

and display of several stochastically uncertain components all 

concurrently displayed on the same chart (Palisade, 2015; Ora- 

cle, 2020). After completing a simulation with multiple related 

forecasts, an overlay chart is created to display the relative cha- 

racteristics of those forecasts on a single chart. The frequency 

data from selected forecasts is superimposed in one chart to 

highlight similarities and differences that otherwise might not 

be readily apparent. There is no limit to the number of forecasts 

you can view on an overlay chart at one time. Namely, the over- 

lay chart displays multiple sets of data placed one on top of the 

other. Displaying the data in this fashion makes it easier to vis- 

ually identify events that coincide with one another and to quick- 

ly determine if a correlation or relationship exists between them. 

While correlation obviously does not imply causation, theoriz- 

ing based upon the data displayed in an overlay chart can justify 

further investigation by the decision-makers to identify the root 

causes of an issue. 

Recently, a new visualization tool referred to as simulation 

decomposition (SimDec) has been introduced that extends Mon- 

te Carlo analysis by enhancing the explanatory power of the 

cause-effect relationships between the multi-variable combina- 

tions of inputs and the simulated outputs. The universality of 

SimDec and its usefulness in planning across many different 

disciplines has been outlined in Kozlova and Yeomans (2020). 

SimDec partitions sub-distributions of the Monte Carlo outputs 

by pre-classifying selected input variables into states, grouping 

combinations of these states into scenarios, and then collecting 

simulated outputs attributable to each multi-variable input sce- 

nario. Since it is a straightforward task to visually project the 

contribution of these subdivided scenarios onto the overall out- 

put chart, SimDec enables a visualization of previously uniden- 

tified connections between multi-variable combinations of in- 

puts on the outputs. SimDec is generalizable to any simulation 

method without the need for any significant additional com- 

puting resources. SimDec’s innovative visual analytics capabil- 

ities have already been considered in a diverse range of envi- 

ronmental decision-making problems (Kozlova et al., 2016; 

Kozlova and Yeomans, 2019; Deviatkin et al., 2020; Hietanen, 

2020; Sadyhova, 2020). Although not commercially available, 

downloadable versions of SimDec code are readily accessible 

in Matlab (Kozlova et al., 2018a, 2018b), VBA for Excel (Koz- 

lova and Yeomans, 2020), Python, and R (Sadyhova, 2020).  

Visualization of the disparate uncertainties within Monte 

Carlo output distributions is a key aspect for effective decision 

support in environmental decision-making. This study specifi- 

cally contrasts the performance and benefits of two significant, 

visual analytics tools – overlay charts and simulation decompo- 

sition. Overlay charts enable the display of multiple sources of 

uncertainty stacked on top of each other in a single graphical 

representation and come as a standard feature in numerous 

commercial Monte Carlo software packages. Conversely, sim- 

ulation decomposition combines user-defined sub-distributions 

of the simulation uncertainties and collectively displays them 

in a combined graphical output figure. Consequently, this paper 

aims to compare and contrast the efficacy of overlay charts ver- 

sus simulation decomposition for visually analyzing uncertain- 

ty in the environmental decision-making process. 

2. Methods Overview 

This section provides a synopsis of the Monte Carlo simu- 

lation technique followed by a brief overview of overlay charts 

and SimDec. 

 

2.1. Monte Carlo Simulation 

Monte Carlo simulation is a straightforward method for 

assessing the sensitivity of the outputs of a modelled system to 

the uncertainty of its input factors. To perform a Monte Carlo 

simulation, one should: (i) estimate the uncertainty of input vari- 

ables, their ranges, and/or their distributions; (ii) run the model 

multiple times altering the input variable values randomly ac- 

cording to the defined distributions; and, (iii) record the output 

variable values for each model run. The resulting vector of out- 

put variables can be analyzed statistically (e.g., by calculating 

minimum, maximum, means, and variance) and/or be displayed 

graphically as a probability distribution (e.g., a histogram). Gra- 

phical depictions of simulated distributions provide an effect- 

tive visual perception of the uncertainty inherent in the out- 

come variables – especially their overall range, shape, and rela- 

tive tendencies.  

 

2.2. Overlay Charts 

As mentioned in the introduction, overlay charts are amongst 

the most predominant visualization tools currently available in 

commercial Monte Carlo software packages (Mun 2010; Pali- 

sade 2015; Oracle 2020;). In overlay charts, input distributions 

are truncated to reflect specific decision-maker assumptions 

and separate simulations are run for each truncated set of in- 

puts. Each of these separate distributions is then projected onto 

a single chart, with one distribution laid (or overlaid) on top of 

another. The approach has frequently been employed for visual 

analysis in risk analysis (Mun, 2010). Overlay charts are an im- 

plementation of a simple idea to enable the display of numerous 

stochastically uncertain outcomes from several different Monte 

Carlo simulations concurrently in a single graph. Figure 1 illus- 

trates two overlay charts generated by Palisade’s @RISK (Pali- 

sade, 2015) and Oracle® Crystal Ball (Oracle, 2020).  

 

2.3. Simulation Decomposition 

In contrast to overlay charts, SimDec permits the simultane-

ous display of numerous stochastically uncertain outcomes 

from a single Monte Carlo simulation run. SimDec constructs 

sub-distributions of the simulation output by pre-classifying 

some of the uncertain input variables into states, clustering the 

various combinations of these different states into scenarios, and 

then collecting simulated outputs attributable to each multivari- 

able input scenario (Kozlova and Yeomans, 2019). Since the 

contribution of subdivided scenarios to the overall output is 

easily portrayed visually, SimDec can highlight and disclose pre- 

viously unidentified connections between the multi-variable com- 

binations of inputs on the outputs. This, in turn, enables decom- 
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posing the probability distribution into the outcomes of dif- 

ferent scenarios. Notably, this approach preserves the shape of 

the original probability distribution obtained from a classical 

Monte Carlo simulation, and simply color-codes different areas 

of this distribution following scenario matching. A SimDec ap- 

proach is generalizable to any Monte Carlo model with negligi- 

ble additional computational overhead and, hence, can be read- 

ily used for environmental analyses that employ simulation mod- 

els. A comprehensive method description and the implementa- 

tion procedure can be found in Kozlova and Yeomans, 2019.  
 

 
 

 
 

Figure 1. Overlay charts by (A) Palisade’s @RISK (Palisade, 

2015) and (B) Oracle® Crystal Ball (Oracle, 2020). 

3. A Comparison of Overlay Charts versus  

Simulation Decomposition  

In order to compare the basic features of overlay charts and 

SimDec, consider the following oversimplified mathematical 

model: 
 

=Y A k B   (1) 

 

where Y is the single output variable of interest; A, B, and k are 

all input variables. For simplicity, A and B are both assumed to 

be uniformly distributed in the range [0, 100] and k = 2. Con- 

sequently, values of the output variable will be distributed over 

the range [0, 300]. The scenarios for decomposition and over- 

lay charts are determined based upon a partitioning of variable 

A into the ranges [0, 20], (20, 80], and (80, 100]. A Monte Carlo 

simulation of the model was then run 10,000 times. Figure 2 

depicts the various graphical representations of Y produced by: 

(A) the overall Monte Carlo simulation; (B) SimDec; and, (C) 

overlay charts.  

 

 
 

 
 

 
 
 

Figure 2. A simple abstract model represented by (A) Monte 

Carlo simulation, (B) SimDec, and (C) Overlay charts with a 
low number of slightly-overlapping scenarios. 

 

Based upon initial visual impressions, the overlay chart in 

Figure 2C appears to provide the clearest visual breakdown by 

scenario of the output uncertainty. However, the overlay chart 

does not effectively capture the inherent asymmetry of scenario 

probabilities, so the visual representation is relatively mislead- 

ing. Namely, the cumulative probability of each scenario in the 

overlay chart is 1, because each scenario is generated from a se- 

parate simulation. Due to different distribution widths, Scenarios 

1 and 3 appear relatively larger (or more probable) than Scena- 

rio 2 in the middle, although the converse is, in fact, the case.  

In SimDec (Figure 2B), the relative areas of each scenario 

to the others corresponds proportionately, in size, to the relation 

(A) 

(B) 

(C) 

Value of output variable 

(A) 

(B) 
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of their relative probabilities. Indeed, the green area (Scenario 

2) in Figure 2B appears substantially larger than either of the 

yellow (Scenario 1) and blue (Scenario 3) areas. This relative 

sizing corresponds to a probability of 0.6 for Scenario 2 in con- 

trast to a probability of 0.2 for each of Scenarios 1 and 3. Thus, 

when a decision-maker observes the stacked visual representa- 

tion of SimDec, the relative probabilities of scenarios can be per- 

ceived intuitively based upon the relative area sizes of each 

scenario region.  

 

 
 

 
 

 
 
 

Figure 3. The same model represented by (B) SimDec and 
(C) Overlay charts with a high number of overlapping 

scenarios with the (A) legend for both graphs. 
 

The asymmetrical issues observed in overlay charts can be 

circumvented only if the scenario ranges have been established 

congruently. This situation is rarely the case, since meaningful 

scenarios reflecting project realities do not generally consist of 

equally sized states for all of the input variable ranges. Under 

such circumstances, visualization in overlay charts can only be 

accomplished if an additional ‘full’ simulation has been per- 

formed that establishes the relative occurrence probabilities for 

each scenario and the size of each scenario’s histogram is then 

subsequently adjusted proportionately by this probability. Such 

adjustments require significant additional coding which proves 

challenging to implement using existing commercial software.  

Furthermore, any initial, yet illusory, visual clarity attrib- 

utable to overlay charts rapidly dissipates with increasing num- 

bers of scenario combinations. For example, with the three ex- 

tra states, [0, 20], (20, 80], and (80, 100], added for variable B, 

the original problem will now be comprised of the nine sce- 

narios listed in the legend of Figure 3A.  

With nine scenarios, the overlay chart (Figure 3C) now 

conceals significant portions of critical information and mark- 

edly distorts the relative scenario occurrence probabilities. Sce- 

nario 5 appears as one of the smallest in Figure 3C, while, in rea- 

lity, it actually occurs most frequently. Furthermore, the bound- 

aries of the distributions are not visible even with a partially 

transparent shading of the bars. More significantly, overlay 

charts are unable to preserve the shape of overall output dis- 

tributions because they fail to account for the relative probabi- 

lities of the sub-distributions contained within them. Using over- 

lay charts can be complicated because (i) one either needs com- 

mercial software to create it or (ii) one must run the same simu- 

lation model multiple times while changing inputs, saving mul- 

tiple model versions, and concatenating the graphs together man- 

ually at the conclusion. The latter procedure is computationally 

intensive if performed on one set of scenarios and becomes pro- 

hibitively expensive time-wise if repeated several times to ac- 

count for different sets of scenarios in an exploratory analysis. 

Finally, when a problem is approached using overlay charts from 

the outset, scenario setting becomes an arbitrary task and can 

fail to consider potentially critical combinations of variable states.  

Conversely, SimDec (Figure 3B) clearly displays that the 

lower boundary of Scenario 7 is considerably higher than the 

lower boundary of Scenario 6. It would be impossible to draw 

such an inference from the overlay chart. One disadvantage of 

SimDec is that it has the potential to distort the relative shapes 

of some sub-distributions. Since some sub-distributions are 

stacked on top of each other, the shape of one sub-distribution 

inherently depends on the shapes of any sub-distributions be- 

low it. As noted in the introduction, SimDec software is freely 

available in several computer languages including an Excel ver- 

sion and can be easily implemented as an add-on to any existing 

Monte Carlo model. A side-by-side comparison of the pros and 

cons of overlay charts versus SimDec is presented in the Table 1. 

Recently, the visual analytics capabilities of SimDec have 

been used to produce novel insights into such diverse environ- 

mental decision-making problems as renewable energy policy 

analysis (Kozlova et al., 2016; Hietanen, 2020), environmental 

policy planning (Kozlova and Yeomans, 2019), carbon foot- 

print analysis (Deviatkin et al., 2020), and green construction 

(Sadyhova, 2020). Hietanen (2020) demonstrated how perform- 

ing a decomposition of renewable energy policy with different 

sets of factors can uncover additional insights and provide a 

comprehensive understanding of the problem’s underlying com- 

plexities. Figure 4 provides a summary of SimDec’s visualiza- 

tion output from these various complex, multifaceted environ- 

mental decision-making problems (Kozlova et al., 2016; Kozlova 

and Yeomans, 2019; Deviatkin et al., 2020; Hietanen, 2020). 

(A) 

(B) 

(C) 

Value of output variable 
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Since one cannot combine separate overlay components into a 

single output distribution chart unless their likelihoods have 

been weighted by their proportional occurrences (which cannot 

be determined without running a complete simulation over all 

the ranges simultaneously), it would seem logical to deduce that 

overlay charts would not have been able to approach these pro- 

blems as comprehensively as SimDec. 

4. Conclusions 

Environmental decision-making frequently requires the  

need for the practical, “real world” analysis of applications pos- 

sessing numerous uncertain factors and unquantified dimen- 

sions. Monte Carlo simulation has been applied to a wide array 

of environmental planning settings to incorporate these uncer- 

tain features and the outputs are commonly displayed as proba- 

bility distributions. Data visualization and visual analytics pro- 

vide decision support tools for the processing, analyzing, and 

communicating of these uncertainties in the decision-making pro- 

process. This study has contrasted the efficacy of overlay charts 

and simulation decomposition in visually analyzing uncertainty in 

Monte Carlo-based environmental decision-making processes.  

 

Table 1. Features, Pros, and Cons of SimDec and Overlay Charts 

Feature SimDec Overlay charts 

Histogram type Stacked Overlaid 

Simulation runs Once Equal to the number of scenarios 

Visibility of edges of the 

scenarios 

Edges of each sub-distribution are clearly visible Edges of some distributions are hidden. The more 

scenarios and the bigger their overlap, the poorer 

visibility. Making chart 3D or the histogram half-

transparent has only a limited positive effect 

Inter-location of scenarios Inter-location of any pair of scenarios can be easily 

analyzed since all the sub-distributions are entirely 

visible 

Inter-location analysis is hindered due to visibility 

issues 

Shape of sub-distributions The shape of sub-distributions is challenging to read 

because sub-distributions are stacked into one chart, and 

the shape of one would depend on the shape of all others 

beneath it 

The shape of distributions is preserved but might 

be partially hidden 

The shape of the overall 

distribution 

The shape of the overall distribution (if as only classical 

Monte Carlo simulation is run) is preserved. The sub-

distributions are displayed as a portion of the whole 

The shape of the overall distribution is not 

preserved since, for every distribution, the 

simulation is run again 

Universal set of scenarios SimDec, by default, decomposes the entire universal set, 

e.g., each variable has its defined minimum and 

maximum and all possible combinations of those in the 

outcome 

The combined set of outcomes depends on the 

definition of scenarios and might not necessarily 

constitute the universal set, so some potentially 

important uncertainty zones might be missed out 

Asymmetric frequency of 

scenarios 

Able to portray asymmetric probability of different 

scenario outcomes based on the combinations of 

predefined states and original distributions of input 

variables since each sub-distribution is a product of a 

single Monte Carlo simulation. The cumulative 

probability of the sum of all scenarios is 100% 

Not able to capture asymmetric probability of 

different scenarios. Because a new simulation is 

run for each scenario, the cumulative probability 

of each scenario is 100% 

Number of scenarios Able to display as many scenarios as required. The color-

coding becomes important for facilitating visual 

perception (e.g., the most influential variable with 

different colors, less influential with shades of those 

colors) 

With a higher number of scenarios, the visual 

perception deteriorates, and more information is 

hidden 

Computational costs 252 sec with Ms. Excel for nine scenarios 1539 sec with Ms. Excel running nine separate 

simulations 

Implementation Adding a module recording the values of the key input 

variables during the simulation, scenario matching & 

histogram color-coding 

(i) The original Monte Carlo simulation model can 

be used without changes, but the approach will 

require running it multiple times and manually 

overlaying the charts 

(ii) An alternative is to create a code that runs the 

simulation multiple times and overlays the chart 

automatically 

Availability SimDec is realized in multiple computer languages and 

available openly for use 

(i) It can be implemented by the user based on the 

existing Monte Carlo model 

(ii) Commercial software 

Operation No changes to the inputs are required, the model is saved 

once, and it contains all decomposition information 

(i) It requires changing the inputs for every 

scenario and either saving multiple models or 

losing the data 

(ii) Ok, but not free 
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Figure 4. SimDec usage in the academic literature: (A) value of a CCS investment for a coal plant in china under carbon trading 
and direct subsidies (Kozlova and Yeomans, 2019); (B) total life-cycle emissions in kg of CO2-equivalent for 1000 customer trips 

with wooden pallets (Deviatkin et al., 2020); (C) wind power project NPV under finnish feed-in tariffs (Hietanen, 2020); (D) NPV 
of a wind farm investment under russian renewable energy support (Kozlova et al., 2016). 

 

Overlay charts represent one of the most predominant vis- 

ualization tools available in comercial Monte Carlo software 

packages for simultaneously comparing several stochastically 

uncertain components. SimDec is a recently introduced visual 

analytics tool for evaluating potential cause-effect relationships 

of multi-variable combinations of inputs on the corresponding 

outputs in Monte Carlo simulation. While overlay charts display 

multiple individual sets of data one-on-top-of-another, SimDec 

permits the simultaneous projection of several combined multi-

variable stochastic uncertainties directly onto a single output dis- 

tribution. 

SimDec provides the ability to observe the total output dis- 

tribution of variables of interest combined with the simultane- 

ous ability to visually detect which components of this overall 

distribution are attributable to specific sets of combinations of 

input variables. These input variable combinations are user-

specified and can be changed in an exploratory fashion to re- 

flect other combinations of input variables. Hence, a decompo- 

sition provides an immediate visual perception of the impacts on 

the output distribution of interest. This decomposed total visua- 

lization of the output represents what most decision-makers wish 

to observe. Significantly, an analogous visual breakdown cannot 

be provided by the overlay chart option without considerable ad- 

ditional computational effort. 

Since SimDec is completely generalizable to any Monte 

Carlo application with only negligible additional computational 

overhead, it can be readily extended into many environmental 

decision-making instances. In addition, decision-makers can vis- 

ually perform exploratory analysis of the outputs by construc- 

ting a variety of different multi-variable input combination sce- 

narios and examining the resulting graphical projections onto the 

output distribution figures. This paper has demonstrated that 

SimDec’s complete generalizability combined with its straight- 

forward visualizations of complex stochastic uncertainties render 

the technique so inherently practical and, perhaps, significantly 

more adaptable than overlay charts for Monte Carlo-based, envi- 

ronmental decision-making applications.  
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