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ABSTRACT. Reliable information on the spreading of oil plume on water caused by massive oil spills is essential for making proper 

clean-up measures. Satellite remote sensing technology has advantages over other methods in terms of larger coverage and without ex- 

pensive operating costs to detect oil spills. In this study, an oil plume delineation method based on the Near-Infrared (NIR) satellite data 

is used to examine oil spill plume area and size for the BP Deepwater Horizon Oil Spill in the offshore water of Gulf of Mexico and for 

the recent Norilsk oil spill in a Northern inland water region. To get accurate results noise signals such as land from the data are masked 

out using SNAP based DEM data and Normalized Difference Water Index method, whereas cloud signals are removed using MODIS 

cloud masking. Cox-Munk model is used to compute the sun glint radiance. Results of DP oil spill case depicts a 4838.84 km2 thicker 

oil plume along with the 20635.53 km2 thinner portion of the oil slicks using MODIS NIR data at a 500-meter resolution. It is 

subsequently applied to the recent Norilsk Oil Spill using higher resolution Sentinel-2 NIR data to test the method for detecting spill 

plume in an inland river water system. Reasonable high-resolution results at 10 meter have been obtained for the smaller scale oil spill 

onto river water compared to larger offshore area, considering that the river site has complex conditions including shallow water and 

river reddish soil close to oil color. The developed method is suitable for detecting thick oil plume in ocean or deep inland water bodies. 
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1. Introduction 

Oil pollution entering the ecosystem has been an issue of 

concern for many years and occur for various reasons. In the 

marine ecosystem, the leading sources of oil spills are operative 

discharge of ships, accidents on ships, accidents relating to oil 

drilling platforms, etc., (Lee et al., 2016). Whereas, for inland 

water systems, oil spills may come from pipelines leakages 

(Nielson et al., 2020) or failures of oil tanks (National Public 

Radio, Inc., 2020). These oil spills can lead to severe damage 

to aquatic life, habitat destruction, imperiling local flora, and 

fauna as well as human activities (Krestenitis et al., 2019). 

To reduce the adverse impacts of oil spills on the envi- 

ronment, and to support the immediate remediation decision-

making, accurate oil plume mapping is often required (Liu et 

al., 2017; Fingas and Brown, 2018). Precise source identifica- 

tion and oil spill monitor can be conducted through ship or air- 

craft surveillance, but these methods may be constrained by 

time delays and narrower spatial coverage (Lee et al., 2016).  
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Satellite remote sensing, on the other hand, is often applied for 

oil plume delineation due to its shorter revisit time and wider 

spatial coverage (Gede Putra et al., 2015; Liu et al., 2017). Data- 

sets from a variety of satellites have been employed for map- 

ping oil plumes. For example, synthetic aperture radar (SAR) 

is capable of detecting the returned signals reflected by small 

capillary waves, these waves can be dampened by oil plume lay- 

ers and reduce the returned signals to the SAR sensors resulting 

in darker areas in the image (Arslan, 2018). Garcia-Pineda et al. 

(2009) used data from RADARSAT-1 (one SAR sensor) and em- 

ployed a texture-classifying neural network algorithm (TCNNA) 

to achieve a good performance in oil slick extraction. Though 

SAR sensors have the advantage of operating under all-weather 

condition, look-alikes (biogenic films, algae, etc.) cannot be dis- 

tinguished and the SAR based approaches are limited to wind 

speed ranging from 3 m/s to 10 m/s (Pisano et al., 2015; Arslan, 

2018). 

Optical sensors, on the other hand, may be affected by 

clouds but has the capacity to identify look-alike oil slicks through 

the sensed optical information (Arslan, 2018). Gede Putra et al. 

(2015) estimated the Fluorescent index from MODIS data in the 

Timor Sea and successfully estimated the oil covered area. Bul- 

garelli and Djavidnia (2012) characterized the difference between 

the spectral properties of suspected oil and that of the surround- 
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ing sea water under the absence of sunglint, using MODIS data 

in Gulf of Mexico in 2010. Althawadi and Hashim (2019) ex- 

tracted oil spill information in Arabian Gulf from Sentinel-2 

image using the RGB (red, green and blue) bands and a region-

based segmentation method. Kolokoussis and Karathanassi 

(2018) also managed to identify oil plumes in the South coast 

of Athens, Greece using Sentinel-2 data. Herein, data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Sentinel-2 are being explored to delineate oil plumes. 

In past studies, different spectrums have been applied to 

detect the signal contrast of different optical characteristics be- 

tween oil plume and the surface water in marine environments 

but scarcely in inland water systems. The optical contrast be- 

tween oil and the surrounding water may be affected by oil type, 

oil evaporation degree, weather condition and sun illumination 

(Fingas and Brown, 2018). However, remote sensing technolo- 

gy can identify oil and water based on their spectral absorption 

and scattering properties.In the near infrared (NIR) range, wa- 

ter has strong absorption rate and negligible scattering, while 

crude oil has a strong absorption rate in the short wavelengths 

but considered exponentially weaker with longer wavelengths 

(Sun and Hu, 2019). Clark et al. (2010) points out that the re- 

flectance of emulsions formed by thick oil with water and other 

matters in the ocean is larger than the reflectance of water in 

the NIR spectrum range. It is usually observed that both crude 

oil and emulsified oil have a higher reflectance rate than water 

in the NIR range, making the detection of oil possible in this 

spectrum. 

The aim of this study is to develop an oil plume delineation 

method for detecting oil spill plume in both offshore and inland 

water areas based on satellite remote sensing information in the 

NIR range. Particularly, the marine-viable method is modified 

for monitoring oil spill in an inland water system. The devel- 

oped approach is applied to two different cases, one based on 

the Deepwater Horizon Oil Spill onto the offshore water of Gulf 

of Mexico (GOM) and another is the inland oil spill onto a river 

basin in Northern Russia. 

2. Methodology 

Satellite remote sensing has been long adopted for the esti- 

mation of water components in inland water bodies that absorb 

or scatter color presenting watercolor, referred as optically ac- 

tive waterbody constituents (OAC), those water components 

include Chlorophyll-a (Chla), total suspended solids (TSS), and 

colored dissolved organic matter (CDOM) (Topp et al., 2020). 

The concept can be explored to differentiate oil color and the 

surrounding water color possibly for oil spill detection in inland 

waters. Satellite images usually contain noise signals (e.g., land, 

cloud) especially for inland water systems due to the smaller 

areas in inland water region compared to vast marine environ- 

ment. Noise signals, not related to oil and water, need to be re- 

moved prior to the analysis of oil plumes on the sea and rivers 

(Lee et al., 2016). It is challenging that these noise signals such 

as land soil may have the same reflectance level as oil, leading 

to misidentification of oil plumes. 

In remote sensing images, water in the glinted areas can 

easily be misidentified as oil (Fingas and Brown, 2018). In the 

GOM case, oil in the non-glinted area may have the same re- 

flectance as water in the glinted area. Several models, including 

the Cox-Munk model (Cox and Munk, 1954), Shaw-Churnside 

model (Shaw and Chumside, 1997), Wu model (Wu, 1972), 

Mermelstein model (Mermelstein et al., 1994) are available for 

accessing the sun glint radiance. It is found that among these 

models, the Cox-Munk model performs the best, which is used 

in this study (Zhang and Wang, 2010). 

Figure 1 presents the main framework to quantify the area 

of oil plume over water based on the analysis of NIR data. The 

proposed approach includes data pre-treatment steps to remove 

noise signals from each satellite image, including land mask- 

ing, cloud masking, glint level calculation, and the main NIR 

based oil mapping step. Software used in this study are the Sen- 

tinel Application Platform (SNAP) from the European Space 

Agency (https://step.esa.int/main/toolboxes/snap/), along with 

SeaDAS toolbox (https://seadas.gsfc.nasa.gov/installers/sanp-

seadas-toolbox/) and MATLAB. Details are discussed in the fol- 

lowing sections. 

 

 
 

Figure 1. The framework with main steps for the proposed oil 

mapping method. 

 

2.1. Land and Cloud Masking 

The first step after data acquisition is to remove the noise 

signals for better analysis. Satellite images may contain signals 

that are not desired for analysis, including land (Lee et al., 2016) 

and clouds (Liu et al., 2017). In some cases, signals from land 

and clouds may have the same reflectance level as signals from 

the water surface, leading to misidentification of oil plumes. For 

this reason, it is important to mask out noise pixels before the 

analysis process. Land pixels from offshore marine environ- 

ments can be masked out using SNAP based on the SRTM-3 

sec (Shuttle Radar Topography Mission launched in 2009) using 

digital elevation model (DEM) data. 

The method used for offshore land masking is not appli- 

cable to the removal of land pixels from inland water systems 

as the elevation of these systems can be larger than 0 m. There- 

fore, the Normalized Difference Water Index (NDWI) is calcu- 

lated for each pixel using the following equation (Du et al., 

2016): 
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where, ρ3 and ρ8 are the top of atmosphere (TOA) reflectance 

of the green band (band 3) and the NIR band (band 8) from 

Sentinel-2, both two bands have a spatial resolution of 10 m. 

The NDWI is also applied for offshore water area for additional 

land pixel removal. 

Characteristics of water at different time and location may 

vary and require specific thresholds for better water extraction 

(Du et al., 2016). It is found that the optimized NDWI threshold 

can provide better results with more accuracy than the standard 

threshold (Acharya et al., 2018). In cases that have insufficient 

ground truth data, thresholds are selected with the narrowest 

boundaries around the water bodies to minimize the misidenti- 

fication of oil plumes from water caused by thin water layers, 

poor water quality or other affecting factors. Clouds can be re- 

moved from the data which are flagged as clouds based on the 

MODIS cloud mask product (Roger et al, 2015). 

 

2.2. Glint Level Calculation 

After the removal of noise signals, unequal reflectance in 

glinted area and non-glinted area should be then dealt with. 

When an oil plume is in a glinted area like the GOM oil spill 

area, the site area may reveal a high reflectance from water in 

the glinted area with similar reflectance values from oil in the 

less-glinted area. Therefore, it is important to calculate the glint 

levels of each pixel. Several models can be used to estimate the 

sun glint radiance, among which the Cox-Munk model is se- 

lected in this study (Cox and Munk, 1954; Zhang and Wang, 

2010). The normalized sun glint radiance based on isotropic 

version (independent of wind direction) of the Cox-Munk mod- 

el can be computed (Pisano et al, 2015): 
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where r(ω) is the Fresnel reflection coefficient of the specular 

reflection angle ω; P(β, σ) is the probability distribution of sea 

surface facet slopes relating to the zenith angle β of each facet 

and the isotropic sea surface slope coefficient σ depending on 

the local wind velocity. θ0 and θ represent the solar zenith angle 

and the sensor zenith angle, respectively. 

This method is used to calculate the sun glint radiance based 

on the corresponding MODIS data. Given that the same type of 

pixels has a similar range of reflectance level in a certain range 

of solar glint radiance, oil and water can then be distinguished 

in that solar glint radiance range, the extracted water area can 

be divided into different zones based on their own glint level. 

 

2.3. NIR Based Estimation of the Water Oil Plume Size 

After the above discussed preprocessing of satellite data, 

the oil mapping can be undertaken. Thick oil often forms emul- 

sions with water and other matters in the ocean. Past laboratory 

experiments showed that the reflectance of oil emulsions has a 

greater reflectance as compared to water in the NIR range (Clark 

et al., 2010). As oil and water have different spectral absorption 

and scattering properties in this range, a single threshold is ex- 

amined to separate water and oil pixels for oil plume delinea- 

tion. For instance, Band 2 (λ = 859 nm) of MODIS and Band 8 

(λ = 842 nm) of Sentinel-2 are examined to estimate the area 

size of oil spill plume as these two bands are the NIR bands 

with the finest spatial resolution of their satellites and the band 

center of these two bands are close. Threshold values for each 

glint level area are determined based on the analysis of the oil 

plume shape in that area and the total oil covered area, which 

can be crossed-compared with the reference data. When there 

is no reference data, the largest reflectance value in the middle 

of the oil-free water area can be examined as the threshold value. 

3. Results and Discussion 

3.1. Case 1: GOM Deepwater Horizon Oil Spill 

The first case selected in this study is the Deepwater Hori- 

zon Oil Spill that occurred in the Gulf of Mexico on April 20th, 

2010. The oil spill originates at around 28°44’17.30” N 88°21’ 

57.40” W (Figure 2(a)) due to the failure of the Deepwater 

Horizon drilling rig, causing 3.19 million barrels of crude oil 

being continuously leaked into the ocean for three months (Sun 

and Hu, 2019). MODIS surface reflectance data MOD09GA 

products on May 17th, 2010 (data source: https://search.earth 

data.nasa.gov) is extracted to build the model. The correspond- 

ing RGB image is obtained in Figure 2(b). 

 

3.1.1. Results of the Satellite Derivation 

The satellite-derived results of the detected oil plume size 

or area and plume geometry shape in this study is compared to 

the ground truth or reference data. As introduced in Section 2, 

the method in the present study uses band 2 MODIS NIR data 

and with threshold mechanisms to reduce noise for accurately 

detecting oil plume size and plume geometry. The proposed 

method is here tested by applying to the GOM offshore oil spill 

case. Literature methods and reference data for the GOM case 

is employed to examine results of the proposed method. Clark 

et al. (2010) employed the coupled MODIS and plane based 

hyperspectral AVIRIS data to estimate the oil plume thickness 

and plume geometry shape and reported plume of 17763 km2 

(3363 km2 of thick oil) as shown in Figure 3(a) is used as a re- 

ference value. The oil plume area and geometry shape reported 

by Clark et al. (2010) is compared to the estimated identified 

thick oil spill area of 3121.35 km2 which is obtained using the 

proposed method. 

Figure 3(b) shows that the modeling result of the estimated 

oil plume area of this study. Estimation of thicker oil slick areas 

is vital for cost-effective clean-up actions. Figure 3(b) illustrates 

the detected relatively thicker oil area (4838.84 km2) is larger 

than the reported thick oil area (Clark et al., 2010). Particularly, 

the top parts of the relatively thicker oil plume marked orange 

and red in Figure 3(a) and 3(b) respectively are almost identical. 

Moreover, results for the red circle region thicker oil plumes 

are estimated with an area of 3121.35 km2 (thicker oil plumes 

in red circle area in Figure 3(b)) compared to the thicker oil 

plumes marked orange at an reported area of 3363 km2 for the 

same red circle region in Figure 3(a). For the lower portion of 
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Figure 2. (a) The selected study area (red box); (b) the retrieved MODIS RGB image of the Deepwater Horizon Oil Spill (blue 

box is the major spill zone).   

 

 
 

Figure 3. (a) A reported reference oil map for the same time and date (Clark et al., 2010) (Orange and green refers thick oil slick 

while green is the plane-instrument detected thick oil slick); (b) Corrected results of relatively clear (thicker) oil spill over oil spill 

area results (red is the relatively thicker oil slick). 

 

the oil plume as indicated in the blue circle of Figure 3b, an ad- 

ditional area of relatively thicker oil slicks (marked red) with 

an estimated area of 1717.48 km2 is detected. The differences 

between two studies are also possibly attributed to the differ- 

ence in the data processing including the consideration of band 

selection, cloud removal, glint contamination, and interpreta- 

tion tools. 

 

3.1.2. Discussion 

As shown in Figure 2, there are many clouds (white pixels) 

over the oil plume, these clouds have higher reflectance value 

than water in the NIR band but in some cases similar to the oil 

plume when the oil plume is under glinted condition. Cloud re- 

moval is sensitive for identifying the oil-covered water area. 

Using alternative advanced cloud detection methods might pro- 

vide better cloud removal results. Zhen (2019) developed a 

cloud detection algorithm for remote sensing image based on 

linear iterative clustering and the modified Qtsu’s method to 

achieve improved results. Tarrio (2020) compared 5 different 

cloud masking methods and suggested an ensemble approach 

of aggregating results from multiple algorithms to remove cloud 

noise. 

Figure 4 presents the result of cloud removal based on the 

cloud flag information of MODIS. As shown in Figure 4b and 

Figure 4c, there may still have some small pieces of scattered 

clouds which were not completely removed using the MODIS 

cloud mask product. These suspected cloud pixels are identi- 

fied as oil due to the similar reflectance level in the NIR band 

compared to oil resulting in detection errors. 

Sun glinted area in the oil plume area poses another issue 

to affect the accuracy of estimating oil plume geometry. As some 

portion of the GOM oil plume is located in a glinted area, the 

satellite-derived result for that part of the oil area (i.e., green 

box area of Figure 5b) is darker than the water near the oil plume 

(yellow box area of Figure 5b), indicating that the glinted sea 

can have a higher NIR reflectance than oil in the non-glinted 

area. 

For the above mentioned reason, if a single threshold is 

applied to all the analyses, water in some glinted area will be 

counted as oil (e.g., the yellow boxes of Figure 5) while oil in 

other areas in the less glinted area will be excluded (e.g., the 

green boxes of Figure 5). Different levels of sun glinted area 

are examined based on the Cox-Munk model. It gives a closer 

result to the reference result (Clark et al., 2010) compared to 

that without glint correction (Figure 5b). In summary, this study 

proves that MODIS band 2 NIR based oil plume detection meth- 
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od is applicable with high level of accuracy, and reasonable 

cloud noise removal and glint correction treatment. However, 

this method can be additionally explored to further remove cloud 

noise signals and detect very thin oil sheen to process high-

resolution satellite data under higher computational cost with 

more local hydrogeological data (Hu, 2011; Pisano et al., 2015). 

 

 
 

Figure 4. (a) Results of cloud removal (removed cloud pixels 

shown in black) of the whole area; (b) in the red box area; (c) 

in the yellow box area. 
 

 
 

Figure 5. Illustrative results of glint effect over the studied 

area: (a) RGB image; (b) MODIS band 2 image after land and 

cloud removal using single threshold. (Area in the green box 

shows low glinted area and the yellow box gives high glinted 

area). 

 

3.2. Case 2: Norilsk Oil Spill 

The Norilsk oil spill occurred on 29 May 2020 in northern 

Russia due to the failure of a fuel storage tank, causing a large 

oil spill into the Ambarnaya River (TASS, 2020). This river is 

reported to be shallow and previously polluted by the local 

mining industry (Interperiodica, 1999). Due to the narrow river 

channel, MODIS data with 500 m resolution NIR bands is not 

suitable. Therefore, Sentinel-2 data (data source: https://scihub. 

copernicus.eu/dhus/) with much higher spatial resolution is ex- 

tracted for the spill area (Figure 6). 

Satellite data from Sentinel-2 on May 23rd, May 31st, June 

8th, June 13th and June 20th in 2020 are used in this study due 

to heavy cloud effects during other days. Multispectral analysis 

gives that band 11 (1610 nm) and band 12 (2190 nm) have a 

reflectance spike but the spatial resolution is lower (20 m), while 

band 8 (842 nm) has a relatively high reflectance with higher 

spatial resolution (10 m) but not at the reflectance spike (Clark 

et al., 2010). A comparison between the images of band 8 (B8) 

and band 11 (B11) is presented in Figure 6. It is observed that 

oil is easier to be detected in the image of B8 with sharper edges 

as compared to the image of B11. Hence, B8 of Sentinel-2 is 

used for further analysis. 

 

 
 

Figure 6. (a) Location of the studied area indicated in the red 

box (the blue dot represents the location of the oil tank 

facility) with results of (b) Multispectral analysis with B8 and 

(c) Multispectral analysis with B11 from Sentinel 2 on 31 

May 2020. 

 

3.2.1. High-Resolution Satellite-Derived Results 

The method tested in the GOM case is applied to the No- 

rilsk Oil Spill with a same data pretreatment analysis. However, 

characteristics of this area largely differ from Gulf of Mexico 

in terms of surface water type, scale, water quality, water depth, 

local climate and environmental conditions. For the noise re- 

moval process, water pixels of May 23rd, 2020 (Figure 7(j)) are 

set as a basis as water under oil can be screened out. Water pix- 

els on other dates are overlaid to the basis to analyze the miss- 

ing area due to spilled oil. During the oil spill period, the water 

bodies in the interested area are either fully covered by clouds 

or free of clouds, hence only cloud free images were used and 

cloud removal was not processed. Figure 7 presents the satel- 

lite-derived RGB image compared with the identified oil-cov- 

ered area after applying the pretreatment method proposed in 

this study for the selected dates. Before quantification of the 

area of oil plume over the study site, initial results in RGB im- 

ages are compared with a report from the European Space A- 

gency (ESA) with labeled oil in the same area based on the 

Sentinel-2 data on May 23rd, May 31st and June 1st in 2020 

(ESA, 2020). It validates that the modeling results of oil plume 

area size and geometry (based on Figure 7) are in line with the 

ESA results. 

Figure 7(b) and 7(d) show that a large amount of oil exists 

in the middle of the study area. Also, a small proportion of oil  
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Figure 7. RGB image of case study area showing spill region on 31st May 2020, (a) without oil detection area (b) with identified 

oil detected area (in red); RGB image of study area showing spill region on 1st June 2020 (c) without identified oil detection area 

(d) with identified oil covered area ; RGB image of study area showing spill region on 8th June 2020 (e) without identified oil 

detection area, (f) with identified oil covered area; RGB image of study area showing spill region on 13th June 2020 (g) without 

identified oil detection area, (h) with identified oil covered area; (i) RGB images of 20th June 2020; (j) RGB image of 23rd May 

2020. 

 

entered the nearby lakes through small tributaries (e.g., Figure 

7(f)). However, the two small oil plumes mapped in the top of 

Figure 7(b) (yellow circles might be misidentified based the fol- 

lowing possible reasons: 1) the majority of the oil did not pass 

through the affected area; 2) the small oil plume marked by a 

yellow circle in Figure 7(a), 7(b) and 7(i) may be misidentified 

as the same area due to shallow water level exposing the color 

of the lake bed or high sediment load. 

After few days, the majority of the oil plume moves further 

to the north on 1st June as indicated in Figure 7(d). On 8th June, 

the identified oil area has dispersed to the nearby river-lake wa- 

ter system in the bottom right area as shown in Figure 7(f). Oil 

distribution in Figure 7(f) is similar to the oil distribution in 

Figure 7(d). Oil is not detected after 13th June, 2020 (Figure 

7(f) and Figure 7(h)), which may be due to prompt cleanup ac- 

tions. The satellite-derived results in this study give that the es- 

timated area of oil coverage is 0.3149 km2 (0.2268 km2 without 

misidentified oil area), 0.2380 km2 (0.2076 km2 without mis- 

identified oil), 0.1617 km2, 0.0963 km2 (0.0575 km2 without mis- 

identified oil) for 31st May, 1st June, 8th June and 13th June, 

2020, respectively. Shapovalova (2020) reported the oil spill 

flowed into the local rivers after May 29th affecting an area 

approximately of 180,000 m2 (i.e., 0.18 km2). This reported af- 

fected area is very close to but smaller than our estimation on 

31st May, 1st June (without misidentified oil) when the major- 

ity of the fuel was still in the scenes.  

(j) RGB image of 23rd May 2020 
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Figure 8. RGB image (a) and band 8 image of Sentinel-2 after applying land masking and NIR threshold (b) on May 31st, 2020. 

 

3.2.2. Discussion 

The complex nature of the Ambarnaya River leads to sev- 

eral challenges during this study. First, water pixels classified 

by the NDWI along the side of the river channel have a similar 

NIR reflectance level compared to oil emulsion layers, which 

may affect the estimation of oil plume edge. These pixels with 

oil-like NIR reflectance can be identified as moist soil or other 

non-water features due to the shallow water depth (Mondejar 

and Tongco, 2019). As depicted in Figure 8, many edges of the 

river channels and boundaries of lakes are delineated. River 

channels and boundaries with high humidity may be misidenti- 

fied as water (Zhang et al., 2019). This issue can be handled by 

setting a higher threshold to the land masking process, but smalll- 

er creeks and smaller water bodies with oil may also be screened 

out. Another solution is employing better water extraction meth- 

ods. For instance, Zhang et al. (2019) suppressed the noise and 

improved accuracy (like shadows, built-up areas and humid bare 

soil) in water extraction using the presence and background 

learning algorithm combining with Sentinel-2 data and Open- 

StreetMap data. 

Image Segmenter app from the MATLAB® toolstrip has 

been employed to remove river edges that have similar reflect- 

ance compared to oil. The RGB image is also utilized to elimi- 

nate shallow water that does not have the dark red color of oil 

layers (Leifer et al., 2012). 

As aforementioned, the study river is shallow. For this rea- 

son, not only the oil-free riversides can have a similar reflect- 

ance compared to oil, but this also can happen in the middle of 

the river or in the lakes. Exposed bedrock with higher NIR re- 

flectance can be classified as water pixels (Herndon et al., 2020). 

As indicated in previous studies (Baldridge et al., 2009; Clark 

et al., 2010), oil can have a similar reflectance value to a range 

of different rocks for the related satellite band data. Thus, using 

the NIR band alone cannot solve this issue. Oil and oil emul- 

sions appear dark reddish in colour both in the Gulf of Mexico 

case (Clark et al., 2010) and the Norilsk case (Skarbo, 2020). 

Hence, the RGB image is also utilized for an indepth analysis 

by removing blocks that are not dark red in the RGB image. 

However, when they have the similar color compared to the oil 

(like the soil at the entrance of the lake in the top left corner of 

the study area, e.g., marked in blue circle in Figure 7(a)), the 

detection of residual oil could be a challenge. Therefore, in ad- 

dition to high accuracy of quantifying oil plume area for offshore 

oil spills, the proposed method for shallow river case has a bet- 

ter level of accuracy to detect oil plume areas in the middle of 

the river channel where the water is deep enough such as Figure 

7(b). Our results (i.e., our satellite-derived affected area of 0.2076 

km2 on May 31st, 2020 compared the reported affected of 0.18 

km2 on May 29th 2020) show a good agreement with the re- 

ported polluted area, confirming a satisfied field applicability 

of the developed method in this study. Also, more ground local 

details related to the oil spill coverage area data are useful to 

further improve the accuracy of the developed approach for oil 

detection in shallow inland water systems. There are three re- 

commendations for future studies: 

(1) As discussed above, water pixels and non-water pixels can 

be difficult to distinguish in shallow water areas (Monde- 

jar and Tongco, 2019). Water depth of the overlapped pix- 

els between NDWI image and the NIR image (such as 

shown in the result in Figure 8) could be used as the min- 

imum water depth to further eliminate river side pixels and 

shallow water areas where the reflectance level can be si- 

milar to oil layers from analysis. However, due to the shal- 

low water depth of the river (Mel’nikov et al., 1973), eli- 

mination may also exclude too many pixels and affect the 

analysis process. 

(2) Introducing more band information can be a potential so- 

lution for distinguishing oil and bedrock. Although rocks 

and riverbeds can have similar reflectance compared to oil 

in the NIR range (Baldridge et al., 2009; Clark et al., 2010), 

they may behave differently in other spectrum ranges. Pos- 

sible solutions include further analyzing the constituents 

of the bedrock, which can support distinguishing bedrock 
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and oil accurately by establishing a differently behaved band 

despite having the same visible color. 

(3) In addition to ground stationary monitoring data, other da- 

ta such as topography data can be used to determine the di- 

rection of river flow and change of water depths in river 

systems. Therefore, satellite image color pieces, represent- 

ing the upstream of the oil layers or from where oil plume 

cannot move through, can be removed from the oil detec- 

tion results. 

4. Conclusion 

In this study, a satellite NIR-data based approach to detect 

oil plume has been developed. The developed method involves 

two major components: pre-treatment of satellite data (land re- 

moval, cloud removal and glint level calculation), and analysis 

of the NIR band. Two different case studies have been conduct- 

ed to examine applicability of the technique. For the GOM Deep- 

water Horizon Oil Spill case, the estimated area and the shape 

of the oil plume using the developed method are close to the re- 

ference study result, and this present study contains more details 

regarding the thicker portions of oil plume. Cloud over the GOM 

case site has been successfully removed to improve the accura- 

cy, and it confirms that cloud and glint contamination have 

been a challenge to estimate oil spill area and geometry. This 

study proves that NIR data are useful to detect oil emulsion and 

thick oil layers in marine environments like the Gulf of Mexico, 

under the in-depth considerations of uncertainties including cloud 

removal and glint correction for more accurate thick oil detec- 

tion. The developed approach is secondly applied to the Norilsk 

Oil Spill for a river system. There are challenges due to the com- 

plex nature of the local Ambarnaya River system. This includes 

a similar reflectance level of the channel of the riversides, the 

shallow water bodies and the reddish riverbed compared to oil, 

which pose issues during the analysis. The developed method 

has been examined to successfully detect thick oil and oil emul- 

sion layers in the middle of open water bodies with enough wa- 

ter depth. Additional ground truth data and more analyses in- 

cluding cloud and glint removal and geohydrological analysis 

could help to deliver the final precise detection results which 

would further support clean-up actions. 
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