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ABSTRACT. Due to the typically large sizes of many stormwater ponds, numerically modeling the bacteria fate and transport within 

these ponds is more practical than in situ monitoring. However, bacteria fate and transport models lack proper verification and rely on 

numerous assumptions without proper validation of these assumptions. In this paper, a sophisticated hydrodynamic model is developed 

for estimating bacteria levels in the Inverness stormwater pond, in Calgary, Alberta, Canada, and is verified in two ways. First, the 

bacteria concentrations predicted by the developed model for several locations within the pond were compared to data collected during 

two separate field campaigns at the pond. Good agreement was observed and while it was found that contamination increased over time 

between the two field campaigns, the most contaminated location was consistently in the west wing. Second, fluid flow velocity vectors 

in numerous locations were measured and compared with the modeled results. The impacts of model assumptions and inputs on the 

bacteria distribution in the pond were also assessed. The model was run for various particle-attachment rate and sizes, various rain 

hyetographs and various wind conditions. It was found that synthetic hyetographs can be used for design purposes to find the optimal 

location for withdrawal. The effect of wind direction was found to be event specific and location specific. In general, wind was found to 

play a crucial role in the bacteria distribution in the pond. 
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1. Introduction 

Reusing stormwater for overcoming water scarcity pro- 

blems due to urbanization and climate change is becoming more 

prevalent in water resources management plans (He et al., 2008; 

Rodríguez-Sinobas et al., 2018). Stormwater may be consider- 

ed an alternative resource for applications requiring less than 

pristine water quality; and therefore, stormwater retention ponds 

are the most viable sources of stormwater for large scale reuse 

(He et al., 2008). Several studies have been conducted regarding 

stormwater reuse (Zhang et al., 2015; National Academies of 

Sciences and Medicine, 2016; Goonetilleke et al., 2017; Ham- 

mes et al., 2018; Allafchi et al., 2019); however, pathogens in 

stormwater are still a source of public health concern (Mankad 

et al., 2019). Therefore, in most jurisdictions, the stormwater 

must meet local guidelines for water quality depending on the 

end-use. If reusing stormwater suggests that a potential exposure 

to bacteria and pathogens is possible, knowledge that guideline 

or regulation levels are never exceeded is necessary for reliable 

stormwater reuse. This knowledge is either ascertained through 
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measurement or through modelling. 

Assessing the bacteria and pathogen levels through mea- 

surement is often not practical for a variety of reasons including 

accessibility, spatial scale (physical size of the pond), and the 

variability in each of the multitude of environmental factors that 

may affect bacteria and pathogen levels over space and time. 

Therefore, computational models offer more practical solutions 

and studies have been developed to simulate bacteria fate and 

transport in large ponds with the intention of identifying the op- 

timal location for water withdrawal (Allafchi et al., 2019, 2021).  

Bacteria and pathogenic related water quality is often indi- 

cated through Fecal Indicator Bacteria (FIB) because FIB exist 

in abundance in warm-blooded animal intestines and are easily 

detected/measured (Borrego and Figueras, 1997). E. coli is the 

most common FIB and is currently used as a standard indicator 

bacteria (Tallon et al., 2005) for many jurisdictions. The source 

of FIB in stormwater ponds would arise from animal sources in 

the drainage area that are washed off, or added directly into the 

pond (from waterflow, for example). 

The literature includes numerous models developed for si- 

mulating water quality of runoff from watersheds (Shrestha and 

Wang, 2019; Vanaei et al., 2021) including the fate and tran- 

sport of FIBs in watersheds. These models generally involve 

integrating a hydrological model with a bacteria fate model (de 
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Brauwere et al., 2014a) and are primarily 1-dimensional for a 

variety of reasons including data availability issues (Aguilera 

et al., 2016). They can provide a low-cost approach to simula- 

ting bacteria fate and transport over large areas where only one 

dimension or only one direction is a reasonable assumption in 

the modelling. Water quality modelling of water bodies like 

stormwater ponds requires the additional integration of hydro- 

dynamic concepts. Hydrodynamics is used in many studies of 

water quality in water bodies, but many are 1- or 2-dimensional 

treatments (Zheng et al., 2011; Babaeyan-Koopaei et al., 2003; 

Wang et al., 2016) that may involve large uncertainties depend- 

ing on the circumstances. 

There are a handful of 3-dimensional models that use Com- 

putational Fluid Dynamics (CFD) for simulating bacteria in 

water bodies. CFD models have been shown to be capable of 

determining spatial and temporal bacteria concentration in large 

water bodies such as stormwater ponds (Allafchi et al., 2019). 

While computationally expensive, they are sophisticated mod- 

elling systems that can provide a wider array of outcomes and 

possibilities for engineering design, while avoiding the inaccu- 

racies of 1- and 2-dimensional treatments to real-world applica- 

tions. A CFD model was developed to simulate the fate of E. 

coli in a stormwater pond arising from a variety of processes 

including attachment and settling (Vergeynst et al., 2012). The 

authors assumed that there was no convection and the impor- 

tance of attachment in the bacterial decay process was high- 

lighted. Shilton and Mara (2005) modelled the transport of E. 

coli in large waste stabilization ponds with different configura- 

tions using a 3-dimensional CFD model that incorporated a first 

order decay model (a commonly used fate model). The model 

focused on the bacteria concentration in the inlet and outlet and 

implemented a bacteria decay model according to the residence 

time calculated by the CFD. Similarly, fecal coliform levels in 

various waste stabilization ponds were also simulated using 3-

dimensional CFD models (Shilton, 2000; Shilton and Harrison, 

2003; Shilton et al. 2008), thus, highlighting the capability of 

CFD models for simulating fate and transport of bacteria. Wu 

and Chen (2011) also incorporated a first order kinetic decay 

model in a 3-dimensional CFD model to simulate biological oxy- 

gen demand (BOD) in an anaerobic lagoon with good success. 

While the movement of water in medium sized water bodies 

is observed to be inherently wind driven (Abbasi et al., 2016), 

all of the above mentioned studies neglected wind effects. More- 

over, all of the transport models assumed steady state condi- 

tions, which may only be appropriate in a few circumstances. 

In most real-world situations, conditions are rarely steady state. 

Allafchi et al. (2021) developed an integrated hydrological-CFD 

model (IHCFD) to simulate bacteria fate and transport in the 

Inverness stormwater pond, in Calgary, Alberta, Canada, that 

incorporated wind and unsteady conditions. The model had two 

components: a hydrological component and a CFD component. 

The hydrological component calculated the stormwater runoff 

discharging into the pond from the catchment, which provided 

inputs to the CFD model to simulate the bacteria in the pond in 

three dimensions. The model was also used to find the optimal 

location for water withdrawal for reuse. 

There are two main challenges associated with the models 

simulating bacteria fate and transport. First, as it is highlighted 

in previous studies (de Brauwere et al., 2014a; Allafchi et al., 

2019), due to a lack of data, model verification is very challeng- 

ing and thus, often neglected. Second, modeling fate and trans- 

port is a highly parameterized endeavour, and due to the gener- 

al lack of information on all these parameters, numerous assump- 

tions are made in order to develop a functioning model. These 

assumptions, if left invalidated, lead to inherent uncertainty in 

the output. In this paper, both of the aforementioned problems 

are considered in the further development of the IHCFD model. 

The IHCFD was modified in this work by adding a non-settling 

particulate-attached bacteria concept, introduceing alternate at- 

tachment rates and varying sediment sizes. This modified IHCFD 

model was verified using bacteria concentra- tion data and fluid 

flow data (Allafchi et al., 2020) collected in a variety of loca- 

tions spatially and with depth, that were compared with those 

data predicted by the model at these locations. In addition, the 

impact of several important assumptions made in IHCFD on 

bacteria distribution were studied. Moreover, in an attempt to 

decrease dependability on on-site collected data for design pur- 

poses, the model’s capacity to provide a reasonable bacteria dis- 

tribution without actual data was also studied. 

2. Methodology  

2.1. Study Site  

The Inverness stormwater pond is a T-shaped, large urban 

stormwater pond located in a residential area in the Southeast 

quadrant of the City of Calgary. On average, it is approximately 

three meters deep and has seven inlets and two outlets (see Fig- 

ure 1). The inlets discharge stormwater runoff from a catchment 

that is approximately 415 ha in surface area. 

 

2.1.1. Data Collection Campaigns  

A wide variety of data have been collected at the study site 

over a near 15 year period (He et al., 2008, 2010a, 2010b, 2011a, 

2011b; He et al., 2015; Allafchi et al., 2019, 2021; Allafchi et 

al., 2020) primarily during the irrigation seasons. Data were col- 

lected in the pond in 2004 to 2007, 2017, 2018 and 2020 through 

surface grab samples, stormwater runoff samples, on-site mete- 

orological data and flow field velocity measurements. The sur- 

face grab samples were collected from the pond in a depth equal 

to 10 ~ 20 cm below the surface. They were collected from 6 

sampling locations during between 2004 and 2007 and this sam- 

pling was repeated for 4 locations in 2017. The locations in the 

first sampling campaign were selected to be greater in number 

and distribution throughout the pond because the goal was to 

understand bacteria distribution in the pond, and to identify the 

optimal location for water withdrawal. However, the second 

sampling campaign was aimed to further verify the model re- 

garding the developments in the catchment between 2007 and 

2017. Therefore, the samples were collected from a fewer num- 

ber of locations in the second campaign. Figure 2 shows the grab 

sampling locations. Samples were tested for several water qua- 

lity indicators including E. coli. The data was collected in 26 

and 24 days during the first and second campaign, respectively, 

with no attempt to favor rainy or dry days. The stormwater  
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Figure 1. The study site: (a) aerial view of the City of Calgary; and (b) the locations of inlets (I1 ~ I7), outlets (O1 and O2) 

(50°54’40.07” N 113°57’45.18” W at the centre of the map). 

 

 
 

Figure 2. Grab sampling locations for the data collection campaigns performed in (a) 2004 to 2007; and (b) 2017. 

 

runoff sampling included flowrate and E. coli concentration. To 

be specific, flowrates of inlet I5 and outlet O2 were measured 

at a 5-minute interval. In addition, an autosampler, triggered by 

a rain gauge, was placed in a manhole before the inlet I5 in or- 

der to measure E. coli concentrations. The stormwater runoff sam- 

pling scheme was scheduled to collect more samples (namely 

at shorter time intervals) in the beginning of the events in order 

to catch the first flush effect. The meteorological data includes 

5-minute rain data in a time period between 2004 and 2007 as 

well as 5-minute wind data collected on August 29, 2020. Flow 

field velocity data were also collected from multiple locations 

in the pond in 2020. Further details on the collection and use of 

these data for verifying the IHCFD model components are given 

below. 

 

2.2. Hydrological and Hydrodynamic Bacteria Fate and 

Transport Modelling  

The developed model has three components: a hydrologi- 

cal component, a CFD component, and a bacteria fate compo- 

nent. The first two are applied through software, while the third 

is embedded in the CFD component through a variety of as- 

sumptions. 

 

2.2.1. Hydrological Model  

The hydrological component involves HEC-HMS (U.S. 

Army Corps of Engineers, 2016) model, which calculates storm- 

water runoff using the Soil Conservation Service Curve Num- 

ber method based on land-use data. HEC-HMS was previously 

calibrated and verified for the drainage catchment to the pond 

(Allafchi et al. 2019) using data in the field campaigns that took 

place from 2004 to 2007. This component provides stormwater 

runoff generated by the catchment’s subbasins transported through 

the inlets of the pond as input to the CFD component.  

 

2.2.2. CFD Model  

The CFD model with inputs from the hydrological model 

simulates pond hydrodynamics leading to a simulated bacterial 

distribution in the pond. For this purpose, conservation equa- 

tions are numerically solved where the equations are discret- 

ized over a grid that is generated according to the Fractional 

Area/Volume method (FAVORTM), which enables the equations 

to recognize the boundaries without the need to necessarily 

make a body-fitted grid. Equation 1 shows the conservation of 

mass, in FAVOR (Savage and Johnson, 2001): 

 

)

( )

(

j j s

j

u A R

x 





             (1) 

 

where j = 1, 2, 3 indicates the three directions of 3D domains; 

uj and Aj are the velocity and the fractional area open to flow in 
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the three directions, respectively; Rs is a mass source term; and 

ρ is the density of the fluid. Equation 2 shows Reynolds-Av- 

eraged Navier Stokes equation (RANS), which represents the 

conservation of momentum:  

 

1
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where t is the time; k = 1, 2, 3 indicate different directions; VF 

is the fractional volume open to flow; P is pressure; Gk is the 

body force; usk is the injection velocity of fluid; and fk represents 

viscous stresses for which a turbulence model is required for 

closure. The renormalized group k-ɛ turbulence model is used 

for modeling the turbulence. 

The free surface is tracked by solving the Volume of Fluid 

(VOF) equation, Equation 3 (Hirt and Nichols, 1981): 

 

1
( ) 0j j

F j

F
FA u

t V x
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  

   

   (3) 

 

where F represents the fraction of cell filled with fluid. Using 

the Finite Volume Method, the equations are discretized over 

an orthogonal structured grid which has over 4 million meshes. 

A 3-dimensional sketch of the pond was generated using Auto- 

CAD Civil 3D based on bathymetric data that was collected 

during a survey performed on August 30, 2016. The equations 

are solved for unsteady state in the time period from half an 

hour before the start of the rain events to 24 hours after the end 

of the events. The time step is determined to keep the Courant 

number less than unity (Flow Science, 2018), but not to exceed 

0.25s. 

The inlets are modelled with disk-shaped mass and mo- 

mentum sources, for which the input values are obtained from 

the hydrological component as noted earlier. The hourly wind 

data was obtained from the meteorological station at the Cal- 

gary International Airport. The wind is modeled as shear stress 

acting on the top layer of the grid using Equation 4: 

 

= | |air DC W W     (4) 

 

where τ is the shear stress; ρair is the density of the air;W is the 

wind vector; and CD is the drag coefficient, which is 0.0026 

(Foreman and Emeis, 2010) in the model.  

 

2.2.3. Bacteria Transport  

The transport of bacteria heavily depends on attachment. 

Regarding the transport of bacteria, three types of bacteria, in- 

cluding free-floating bacteria, settling particulate-attached and 

non-settling particulate attached bacteria, were used in this study. 

It was assumed that the biological movement of bacteria is neg- 

ligible and that the bacteria have a negligible effect on the flow 

field. Thus, the free-floating bacteria move with the water and 

are modeled as a passive scalar. The non-settling particulate-

attached bacteria transport is similar to that of free-floating. 

However, their fate is different from the free-floating. Both the 

free-floating and non-settling particulate-attached bacteria trans- 

port are modeled using equation 5: 

 

1 1 sorb b b
j j j b
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F F F
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      (5) 

 

where Fb is bacteria concentration, D is diffusivity and Fb
sor is 

the bacteria source term. Similar to previous studies (Wu and 

Chen, 2011; Allafchi et al., 2019), it was assumed that the dif- 

fusion of bacteria is negligible compared to convection.  

A sediment transport model was integrated into the main 

model in order to simulate the transport of settling particulate-

attached bacteria. All types of the aforementioned bacteria are 

transported with the fluid flow, with an exception of the settling 

particle attached bacteria that settle once following the fluid 

flow. In other words, that type of bacteria has an extra compo- 

nent of velocity downward. Equation 6 shows the downward 

component of velocity related to the settling particulate-attached 

bacteria: 

 

 
0.5

2 3

*10.36 1.049 10.36
f

settling

v
u d

d
   
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        (6) 

 

with d* equal to the dimensionless grain diameter. According 

to the City of Calgary (The City of Calgary Water Resources, 

2011), stormwater runoff of the region carries a wide range of 

sediment size. However, it was assumed that E. coli attach to 

particles smaller than 2 µm (Muirhead et al., 2006). Similar to 

previous studies (Bai and Lung, 2005; Wu et al., 2009; Allafchi 

et al., 2019), it was assumed that half of the bacteria are attach- 

ed to sediment particles. 

 

2.2.4. Bacteria Fate Model  

Once the transport of both free-floating and particulate-

attached bacteria is determined, a field function implements the 

first order decay of bacteria on them separately and calculates 

the total number of bacteria in each computational cell. Similar 

to previous studies (Wu et al., 2009), it was assumed that the 

decay rate of the attached bacteria is a quarter of that of free-

floating bacteria.  

Equation 7 shows the first order kinetic decay: 

 
( )

0

t

tC C e                  (7) 

 

where Ct and C0 are the concentration of bacteria at the time of 

t and t = 0, respectively; and η is the bacteria decay rate. The 

temperature is the dominant parameter affecting survival of bac- 

teria (Wang et al., 2018). The decay rate of free-floating E. coli 

is modelled by Equation 8, which has been used in many stu- 

dies (Beaudeau et al., 2001; Ouattara et al., 2013; de Brauwere 

et al., 2014b): 
 

2( 25) 25

400 400
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where k20 is decay rate of E. coli at 20 ºC. In this paper, similar 

to Ouattara et al. (2013), a value of 1.25 × 10-5 is used for k20.  

 

 
 

 
 

Figure 3. Data collection on August 29, 2020: (a) canoe 

setup; and (b) data collection locations (the aerial map was 

acquired from Google earth). 

 

2.3. CFD Model Verification Data  

Specific details on what data were used, and how, to verify 

the IHCFD model’s velocity flow field and predicted bacteria 

concentrations are given below.  

 

2.3.1. Flow Field Velocity Data  

On August 29, 2020, flow field velocity magnitudes and 

directions were measured in multiple locations within the pond 

from two canoes deployed near the centre of the pond. Figure 

3 shows the canoe setup and locations where the data were col- 

lected. At each location, the canoes were secured using 4 an- 

chors and a weight was send to the bottom with a winch held 

between the boats. Also, specific attention was paid to position 

the canoes in the wind direction in order to minimize the impact 

of the canoes on the flow near the data collection locations. The 

data were collected at different depths and with two instruments: 

an Acoustic Doppler Velocity meter (ADV) and a Dye Injection 

Velocity meter (DIV) (Allafchi et al., 2020). However, due to 

the limitations in the devices, in some locations the data were 

acquired with only one instrument. The ADV cable did not allow 

measurements deeper than 1.8 m. In addition, DIV had limita- 

tions in measuring flow field velocity when in very low speeds 

(Allafchi et al., 2020). The wind driven flow field in the pond 

was simulated using the wind data collected from a meteorolo- 

gical station installed on the Northwest side of the pond. The 

collected data and the simulation results were compared for the 

purpose of model verification. The flow field was measured at 

V1 on August 27, 2020; however, the meteorological station 

was not working properly on that day. Therefore, the data on 

that location was not used for the verification.  

 

2.3.2. Bacteria Concentration Data  

The bacteria concentration in the inlet I5 was measured 

during several storm events in 2007. The bacteria concentration 

in the other inlets was obtained based on the land-use in other 

subbasins and by knowing the relationship between the land-

use and concentration of bacteria in the stormwater (Schoono- 

ver and Lockaby, 2006). TSS were also measured during the 

data collection campaign. TSS of other inflows was assumed to 

be the same as that of I5. In addition to the data collected from 

the I5 inlet, E. coli data from weekly grab samples data collect- 

ed from 10 ~ 20 cm below the surface in six locations inside 

the pond (P1 ~ P6 in Figure 2) in 2007 were also used E. coli 

data collected in 2017 from the four locations sampled that year 

were also used. 

 

2.4. Verification and Assessment Methods   

A sensitivity analysis was conducted to assess the assump- 

tions used in the model. The Basis of Comparison (BOC) from 

which the sensitivity analysis was made is from three storm 

events: one on September 20, 2007; another on May 28, 2007; 

and the third on August 26, 2007. The IHCFD model was setup 

to simulate the pond’s response and resulting bacterial distribu- 

tion during and after each of these storms, which served as the 

BOC. The impact of some of the model assumptions on the bac- 

teria distribution was assessed through the sensitivity of bacte- 

ria concentrations at 7 locations (the six locations P1 to P6 and 

the withdrawal location) by modifying specific model assump- 

tions and comparing the results to that of the BOC. To be spe- 

cific, bacteria distribution in the 7 locations after the events were 

computed for different assumptions of: (i) attachment rate of 

bacteria; (ii) sediment particle size that the bacteria attach to; 

(iii) rain hyetograph; (iv) wind direction; and (v) wind magni- 

tude. As well, a sixth set of simulations involved determining 

the average wind during the irrigation season and the simula- 

tions were run with that wind in order to assess the predictabil- 

ity of the bacteria distribution during average wind and zero 

wind conditions. The time period of the simulations was half 

an hour before the start of the events until 24 hours after the end 

of events. Irrigation is generally unnecessary during and right 

after (e.g., within 24 hours) rain events. Therefore, the bacteria 

distribution in the pond 24 hours after the end of the events, 

when possibly starting irrigation, was of interest. Herein, the 

term “after event” refers to 24 hours after the end of the event. 

Numerous simulations were run for this paper, however, parti- 

cular attention was paid to change only one assumption/input 

at a time. 

The attachment study was performed only for the event on 

September 20, 2007. However, the other assumptions were as- 

sessed for all of the three events. Attachment to four particle 

sizes was simulated and the distribution of bacteria in the pond 

was obtained. In addition, bacteria distribution was found for 3 

different attachment rates, namely 25, 50 and 75%. The impact 
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Figure 4. Modeled E. coli concentration on the surface of Inverness pond on (a) May 28, 2007 at 1:05 am (end of storm event); (b) 

August 26, 2007 at 3:20 pm (end of storm event); (c) September 20, 2007 at 9:40 pm (end of storm event); (d) September 21, 

2007 at 3:40 am; (e) September 21, 2007 at 3:40 pm; and (f) September 21, 2007 at 9:40 pm. Note the difference in the color bars 

and the withdrawal location is shown by a white cross sign in Figure 4(a). 

 

of rain was also assessed by generating four synthetic hyeto- 

graphs for each event and then run the model in order to find 

the bacteria distribution after the events. Comparing the result- 

ant bacteria distribution with that of the actual rain would pro- 

vide insight into the role of rainfall patterns on the predictabi- 

lity of bacteria distribution in the pond. Also, a comprehensive 

assessment was performed to find the impact of wind on the 

bacteria distribution. The actual wind, which changed direction 

and magnitude every hour (according to the data), was rotated 

from -90 to +90 degrees. To be specific, the actual event’s wind 

magnitude was left untouched, however, all of the wind direction 

data points were shifted by a constant value. During the study 

of wind, rain hyetographs, attachment rate and all other settings 

remained the same as those of the BOC. It should be noted that 

the studies on the rain and wind were performed introducing a 

non-settling sediment, for which the decay of particulate-attached 
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bacteria was taken into account, but the settling was neglected. 

This type of sediment was used in the aforementioned studies 

due to the high numerical costs associated with the sediment 

transport models. Using a non-settling sediment type made it 

practical to run the copious number of simulations. Similarly, 

to assess the assumptions and impacts of wind magnitude, only 

the wind’s magnitude was changed while all other assumptions 

and inputs remained unchanged. The wind magnitude data, which 

are separate data points, was changed by ±25%, ±50%, ±75% 

and 100%. The process was performed for all of the three storm 

events. In other words, the wind blowing over the pond during 

each event was changed and its impact on the bacteria distribu- 

tion was found if the wind was stronger or weaker. Finally, with 

regard to average wind conditions, the recorded wind data in 

the region was obtained and the wind during the irrigation sea- 

son was averaged. Wind magnitude data since 1971 and wind 

direction data since 2014 were obtained (Canada Weather Stats, 

2020) and the average was calculated. The events were simulat- 

ed with the average wind as well as ±1 standard deviation of 

the average wind. This set of simulations was performed to as- 

sess the predictability of bacteria distribution without having 

the wind data of the event. The simulations were performed 

using FLOW-3D 12u1 CFD commercial code. The simulations 

were run on 3 nodes, equal to 128 computational cores, of Cedar, 

which is a high-performance computer run by Compute Canada.  

3. Results and Discussion  

Figure 4 shows the bacteria distribution on the surface of 

the pond at the end of storm events on 28 May 2007 and 26 Au- 

gust 2007 as well as during 24 hours after the end of the event 

that occurred on September 20, 2007. The highly contaminated 

stormwater was discharged into the pond through the inlets and 

distributed throughout the pond. In Figures 4(c) to 4(f), it can 

be seen that even after 24 hours from the onset of the event, bac- 

teria were not evenly distributed through the pond, and some 

parts of the pond were more contaminated than other parts. The 

middle of the pond near the surface, where the three wings join, 

was already determined as the optimal location for withdrawal 

for reuse because it has the lowest concentration of bacteria, 

comparatively (Allafchi et al., 2021). The withdrawal location 

is shown by a cross sign in Figure 4(a).  

 

3.1. Verification of Flow Velocity Vectors  

The important role of fluid flow field in the hydro-environ- 

mental models was previously emphasized (Allafchi et al., 2019). 

Therefore, in an attempt to validate the model with respect to 

fluid flow field, velocity data were collected from the pond and 

the model was run for the same day. Figure 5 demonstrates the 

collected data from the pond as well as the simulation results 

for the corresponding day. The model slightly underestimated 

velocity magnitude. It might be associated with the wind tunnel 

effect due to the trees and buildings around the pond which can 

increase wind velocity over the pond, particularly over the South 

wing. On the other hand, wind obstruction by the buildings might 

have caused underestimation of wind by the on-site meteorolo- 

gical station. In general, good agreement was observed for both 

velocity magnitude and direction. The deviation of the simulat- 

ed flow direction from measured flow direction is relatively 

high in three locations, including V2 and V3 at a depth equal 

to 2.6 m and V4 at a depth equal to 0.3 m. At these locations, 

the measurements are associated with high random error because 

the flow velocity is comparatively low, in which even small 

eddies could change the flow direction (Allafchi et al., 2020). 

The flow near the surface at V2 and V3 were in nearly opposite 

directions to the directions at these locations near the bottom. 

It suggests that the circulation of the wind-driven flow in the 

pond was reasonably approximated by the model.  

 

 

 
 

Figure 5. Comparison of simulation results with observations 

on August 29, 2020, (a) flow velocity magnitude; and (b) flow 

direction. 

 

3.2. Verification of Bacteria Distribution  

It should be noted that the bacteria data collected in the pond 

in 2007 were collected over a period of 26 days with no attempt 

to favour rainy or dry days; however, 7 out of the 26 days 

happened to be within three days after a rain event. In addition, 

during another campaign in 2017, similar data was collected in 

24 days but from four different locations in the pond. Similarly, 

6 and 4 days were within two and one days after a storm event, 

respectively.  

(a) 

(b) 
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Figure 6. Normalized E. coli at the Inverness pond; data collected during the campaign in (a) 2007; and (b) 2017. 

 

The E. coli concentrations were normalized by dividing the 

observed concentration by the maximum concentration observ- 

ed in all locations for the day. For example, the location that has 

the maximum E. coli concentration would have a normalized E. 

coli equal to one. The normalized E. coli at each location was 

averaged for each category separately. The simulated bacteria 

concentration was also normalized with a similar approach. Fig- 

ures 6(a) and 6(b) show the normalized bacteria collected in the 

first and second campaign, respectively. In spite of the change 

that occurred in the land-use between the year 2007 and 2017, 

the most contaminated part of the pond did not change. The 

data collected from both campaigns shows that the tip of the 

West Wing had the highest concentration of bacteria compared 

to the other locations. Figure 6(b) demonstrates that after rain 

events, the tip of the West wing was likely the most contami- 

nated part of the pond. However, in a few days after the events, 

some of the pollution at this location was transported to the rest 

of the pond. Following the West wing, the South wing was the 

second most contaminated wing of the pond. Comparing Figures 

6(a) with 6(b), both of the South and East wings became slight- 

ly more contaminated during the time between 2007 to 2017, 

particularly after rain events. The reason might be the develop- 

ments (turning farms into residential areas) during that time on 

the East and South side of the catchment from which the storm- 

water drains into the pond through I3 and I4, respectively. 

 

3.3. Impact of Model Assumptions  

3.3.1. Impact of Bacteria Attachment Assumptions  

In the model developed for the pond, it was assumed that 

half of the bacteria attach to sediment particles. To be specific, 

half of the E. coli were assumed to be attached to particles small- 

er than 2 µm, as Muirhead et al (2006) found. It should be noted 

that other particle sizes, which E. coli predominantly attach to, 

were also proposed in the literature. For example, Anna et al., 

(2005) found that more than 90% of E. coli attach to particles 

smaller than 30 µm (Anna et al., 2005). The impact of both as- 

sumptions, namely the attachment ratio and particle size, on the 

bacteria distribution in the pond was studied. Figure 7 shows 

the impact of attached particle size on the bacteria concentra- 

tion at the withdrawal and the six locations. In general, chang- 

ing the particle size did not change the relative distribution of 

bacteria. In other words, the most and the least contaminated 

locations and the ones in between did not change. However, in- 

creasing the particle size decreases bacteria concentration near 

the surface. The change is quite substantial replacing sediment 

size smaller than 2 µm with 2 to 10 µm. However, the change 

in bacteria concentration was negligible when the particle size 

was increased from 10 ~ 20 µm to 20 ~ 50 µm. The reason is 

that settling of particles that are smaller than 2 µm was not con- 

siderable (Allafchi et al., 2019), but larger particle sizes are as- 

sociated with more settling which decreases bacteria concentra- 

tion in the study locations that are situated near water surface. 

On the other hand, reduction in bacteria concentration by increas- 

ing the particle size occurred only to an extent. Once most of 

the attached bacteria are already settled, increasing attached par- 

ticle size does not further decrease bacteria concentration. This 

can be observed comparing the bacteria concentration for the 

attached particle of 10 ~ 20 µm and 20 ~ 50 µm. 

 

3.3.2. Impacts of Settling Sediment  

In addition, the attachment rate was studied and in this 

study, it was assumed that E. coli attach to particles smaller than 

2 µm. Since the settling of such particles is found to not be con- 

siderable (comparatively speaking), two sediment types were 

considered for this study, namely sediment with settling and 

sediment without settling. The results from the two sediment 

types are shown in Figure 8. The sediment with settling was 

modeled integrating the sediment transport model into the main 

model; however, sediment without settling was modeled with 

passive scalars. In both cases bacteria concentration reduced 

with decreasing attachment rate at P3, the most contaminated 

location. Figure 8(b), which is associated with the non-settling 



F. Allafchi et al. / Journal of Environmental Informatics Letters 5(2) 87-101 (2021) 

95 

 

sediment type, shows that decreasing the attachment rate de- 

creases the bacteria concentration in all of the locations. How- 

ever, in the settling-sediment type, bacteria concentrations were 

not necessarily decreased by reducing attachment rate (see Fig- 

ure 8(a)). Attachment protects bacteria from some lethal environ- 

mental factors, and thus, decreases the decay rate. That explains 

why in the non-settling sediment type, decreasing attachment 

rate decreases bacteria concentration. However, it is harder to 

predict the change in bacteria distribution with settling-type sedi- 

ment because the effect of settling and the effect of protection 

on the changes in bacteria concentration effectively neutralize 

each other. However, in the settling type sediment, the bacteria 

concentration reduced by decreasing attachment rate only at P3 

and remained nearly the same at other locations. The passive 

scalar model used for non-settling sediment, requires much less 

numerical time compared to the sediment transport model. There- 

fore, it became practical to further conduct the sensitivity ana- 

lyses on the factors influencing the bacteria distribution in the 

pond, particularly factors that the attachment does not play a role 

in, such as wind and inlet flowrates. Hence, the case with 50% 

attachment to the non-settling sediment is used as part of the 

BOC benchmark in the rest of this paper to run the model nu- 

merous times that study the effect of multiple factors on the 

bacteria distribution. 

 

 
 

Figure 7. Impact of particle size attachment on bacteria 

distribution after the event on September 20, 2007. The ‘W’ 

on the horizontal axis refers to the withdrawal location. 

 

3.3.3. Impact of Rain Distribution and Flowrate  

In order to find the impact of inflow flow rates on the 

distribution of bacteria, four synthetic rains were generated and 

fed to the hydrological model. Three Chicago hyetographs 

(American Iron and Steel Institute, 2010) and a triangular 

hyetograph (Ellouze et al., 2009) was modeled and the resultant 

bacteria distributions were compared with that of the actual 

event. The Chicago hyetographs are distinguished by the peak 

factor varying from 0.3 to 0.5. The synthetic hyetographs were 

designed to have the same total volume and duration of rain 

compared to the actual events. They were also set to occur at 

the same time as the actual event. Figure 9 demonstrates the 

synthetic hyetographs generated for the event occurring on 

September 20, 2007. 

 
 

 

*Withdrawal location 
 

Figure 8. Impact of attachment rate on E. coli distribution for 

(a) sediment with settling; and (b) sediment without settling. 

The ‘W’ on the horizontal axis refers to the withdrawal location. 

 

Once the flowrates were found running the hydrological 

model, the CFD model was run to find the bacteria distribution 

under different rain conditions. All other settings and conditions 

including bacteria pollutographs of the inlets and wind at each 

day was the same as the actual event day. The distribution of 

bacteria in the six locations using the synthetic hyetographs 

was obtained and compared to that of the BOC for each of the 

three events (see Figure 10). In almost all of the cases, the bac- 

teria concentration was underestimated. However, the most con- 

taminated location of the pond, P3, did not change by altering 

the hyetograph in any of the events. It is to be expected that the 

total number of bacteria changes with changing hyetograph be- 

cause the bacteria pollutograph, of the inlets did not change 

during this study. Therefore, depending on the timing of pollu- 

tograph and flowrate peaks, the total number of bacteria in the 

pond can be overestimated or underestimated. In addition, the 

pattern of bacteria concentration from P1 to P6 was almost re- 

peated with all of the hyetographs. Only the triangular hyeto- 

graph on September 20, 2007 showed a slightly different pat- 

tern. Moreover, the withdrawal location appeared to be the least 

contaminated location of the pond even with different hyeto- 

graphs. The concentration of bacteria at only the withdrawal 

location with different hyetographs is shown in Figure 11. This  
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Figure 9. Synthetic hyetographs to model the storm event on September 20, 2007, (a) Chicago hyetograph Y = 0.3; (b) Chicago 

hyetograph Y = 0.4; (c) Chicago hyetograph Y = 0.5; (d) triangular hyetograph. 

 

  
 

Figure 10. Impact of hyetograph on bacteria distribution after the event occurred on (a) September 20, 2007; (b) May 28, 2007; 

and (c) August 26, 2007. The ‘W’ on the horizontal axis refers to the withdrawal location. 

 

 
 

Figure 11. Impact of hyetograph on the bacteria distribution at the withdrawal location after the event on (a) September 20, 2007; 

(b) August 26, 2007; and (c) May 28, 2007. 

 

(a) (b) 

(c) (d) 

(c) 
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Figure 12. Impact of wind direction on bacteria distribution after the event on (a) and (b) September 20, 2007; (c) and (d) May 

28, 2007; (e) and (f) August 26, 2007. The ‘W’ on the horizontal axis refers to the withdrawal location. 

 

Figure also confirms that the withdrawal location would still be 

the optimal location for water withdrawal for reuse because it 

would have the lowest bacteria concentration. It can be concluded 

that synthetic hyetographs, particularly the Chicago hyetograph, 

can be used to find the most contaminated and the optimal with- 

drawal location of a stormwater pond for design purposes or 

when actual rain data is not available. 

 

3.3.4. Impact of Wind Direction  

A set of simulations was run to study the effect of wind 

direction on the bacteria distribution of the pond. Accordingly, 

all other parameters such as rain hyetograph, bacteria concen- 

tration in the inlets and wind magnitude were the same as those 

of the actual event. It should be noted that the wind data (mag- 

nitude and direction) at the time was recorded on an hourly ba- 

sis. For studying the impact of wind direction, the actual wind 

data, in which wind direction and magnitude change hourly, was 

modified and used for the simulations. The direction is basical- 

ly an angle, and constant values were added or subtracted to it. 

In this paper the wind directions are handled on a trigonometric 

basis. For example, adding 90 degrees to a North wind would 

turn it into a West wind. Figure 12 shows the bacteria distri- 

bution after the three events if the wind is rotated by certain 

angles. The wind was rotated from -90 to +90 degrees with small- 

er intervals at the middle of the range. Figures 12(a) shows that 

if the direction of wind at the event on September 20, 2007 was 

changed, in most cases the pattern of the bacteria distribution 

24 hours after the event (bacteria concentration from P1 to P6) 

would generally follow the pattern of the BOC. In other words, 

P3 experienced the maximum concentration of bacteria and P6 

in the South wing was the next highly contaminated location. 

However, Figure 12(b) shows that the pattern was not followed 

in three out of four cases. To be specific, in the -90° case, the 

bacteria concentration at P6 was the lowest among all the lo- 

cations. Also, in the -22.5° and -11.25° cases, concentration of 

P1 was larger than that of P6. The bacteria distribution after the 

event occurred on May 28, 2007 changed substantially with the 

change in wind direction, but it generally followed the pattern 

of the BOC (see Figures 12(c) and 12(d)). Also, the change in 

the bacteria distribution itself followed a pattern after the event 

occurred May 28, 2020. That is, with increasing the change in 

the wind direction the change in bacteria concentration at P3, 

the most contaminated location, increased with the maximum 

and minimum changes occurred in 90° and 11.25° change, re- 

spectively. The bacteria distribution after the event on August 

26, 2007 had some exceptions that did not follow the pattern, 

see Figures 12(e) and 12(f). For example, in the +90° case, P3 

was not the most contaminated case anymore. Also, in the -90° 

case, P6 located at the South wing was not the second most 

contaminated location. However, Figure 12(f) shows a pattern 

in the bacteria distribution at P3. In general, Figure 12 shows 

that study of wind direction is both event specific and location 

specific and it is not practical to make a general prediction about 

the impact of wind direction on the bacteria distribution through- 

out the pond. The reason is that the shape of the pond and the 

high number of inlets make it difficult to predict the fluid flow, 

which is 3-dimensional and unsteady. Also, the wind is chang- 

ing over time. 

However, studying the impact of wind direction more close- 

ly on the withdrawal location shows that by changing wind di- 

rection, the withdrawal location might not be the optimal loca- 

tion anymore. The reason is that in some cases the bacteria con- 

centration in the other locations happened to be lower than that 

of withdrawal location. Interestingly, some of those cases oc- 

curred when the wind direction changed slightly as seen in 



F. Allafchi et al. / Journal of Environmental Informatics Letters 5(2) 87-101 (2021) 

98 

 

 

 
 

Figure 13. Impact of wind direction on the bacteria distribution at the withdrawal location after the event on (a) September 20, 

2007; (b) August 26, 2007; and (c) May 28, 2007. 

 

   
 

   
 

Figure 14. Impact of wind magnitude on bacteria distribution after the events occurred on (a) and (b) September 20, 2007; (c) and 

(d) May 28, 2007; (e) and (f) August 26, 2007. The ‘W’ on the horizontal axis refers to the withdrawal location. 

 

Figure 13. It should be noted that the bacteria concentration at 

the withdrawal location remained below that of the average of 

the six locations in all of the cases regarding the change in wind 

direction. Both Figures 13 and 11 show the impact of an envi- 

ronmental factor, namely wind direction and rain, respectively, 

on the bacteria distribution of the withdrawal location and com- 

pared with that of other locations. Therefore, despite the differ- 

ence in the nature of those environmental factors, comparing the 

figures might enable us to assess the relative importance of dif- 

ferent environmental factors. Originally the withdrawal location 

had been determined because it was the optimal location for with- 

drawal for reuse. In other words, it had shown the lowest bac- 

teria concentration throughout and after the events. The with- 

drawal location remained optimal with different rain hyetographs 

(see Figure 11). However, it was not optimal location anymore 

in several cases when the wind direction changed, (see Figure 

13). This might indicate a larger impact of wind direction on 

bacteria distribution, particularly in the withdrawal location, 

than rainfall distribution. However, due to the difference in the 

nature of the environmental factors and their impact on the total 

number of bacteria in the pond, greater study is recommended. 

 

3.3.5. Impact of Wind Magnitude  

Similar to the wind direction, wind magnitude during and 

after the events was changing on an hourly basis. In this section, 

the impact of wind magnitude on bacteria distribution is studied 

by changing the hourly wind magnitude data points. For exam- 

ple, simulating the pond with a wind magnitude half of the wind 

in actual event shows the bacteria distribution if the wind would 

have been half of what it was, denoted by wind-50% in Figure 

14. In all of the three events, when the wind magnitude increas- 

ed, the bacteria concentration pattern from P1 to P6 was gener- 

ally followed. In addition, it can be observed that increasing 

wind magnitude caused an underestimation in bacteria concen- 

tration at P3, the most contaminated location of the pond. The 

reason is that P3 is located at the tip of the West wing and the 

highly contaminated stormwater entered the pond from the near- 

by subbasins has only one way to get transported to the other 

parts of the pond. In the process of transporting bacteria from  

 (c) 
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Figure 15. Bacteria concentration at the Withdrawal location on (a) September 20, 2007; (b) August 26, 2007; and (c) May 28, 2007. 

 

 
 

Figure 16. Impact of averaged wind on the bacteria distribution in the pond on (a) September 20, 2007; (b) May 28, 2007; (c) 

August 26, 2007. The ‘W’ on the horizontal axis refers to the withdrawal location. 

 

this location to the rest of the pond, wind plays the primary role. 

Therefore, increasing the wind magnitude accelerated transpor- 

tation of highly contaminated stormwater from this region, and 

thus, the bacteria concentration dropped in this area. The maxi- 

mum drop occurred in the case of doubling the wind (wind+ 

100%) after all of the three events. However, decreasing the 

wind magnitude during and after the actual events does not ne- 

cessarily decrease or increase the bacteria concentration at P3. 

In addition, the pattern of bacteria concentration from P1 to P6 

was not followed in the cases that wind magnitude was lower 

than that of actual events, see Figures 14(b), 14(d), and 14(f). 

The effect of diffusion of bacteria in the transportation of bac- 

teria was assumed to be negligible compared to that of convec- 

tion in the model. The effect of diffusion on the transport is 

more highlighted when the wind magnitude is minimal. Ther- 

efore, decreasing wind will increase spatial sensitivity of the 

model because the main factor that played role in distributing 

bacteria was decreased, and thus, the gradient of bacteria con- 

centration near the inlets increases. In other words, the contam- 

inated stormwater that was discharged into the pond during the 

storm would not get dispersed and would remain as a plug that 

moves slowly. Then, if the grab sampling location (P1 ~ P6) 

and withdrawal location happen to be near the periphery of the 

plug, the high sensitivity of the model would appear in the bac- 

teria concentration. This effect can be observed in Figures 14(b), 

14(d), and 14(f). 

 

3.3.6. Impact of Averaged Wind  

In an attempt to further assess the predictability of the bac- 

teria distribution in the pond, the averaged wind during the irri- 

gation season was obtained and the pond was simulated with 

that wind. The wind magnitude in Calgary, which has been re- 

corded since 1971 on an hourly basis (Canada Weather Stats, 

2020), was averaged for irrigation seasons (beginning of May 

to the end of September). Similarly, hourly wind direction data 

has been recorded since 2014, and it was averaged as well. The 

averaged wind magnitude and direction in irrigation season were 

found to be 14.5 km/h and 178° angle, respectively. The pond 

was simulated with that wind and the modeled bacteria distri- 

bution was compared with that of the actual event. Moreover, 

the pond was simulated with two other wind magnitudes equal 

to the averaged wind ± 1 standard deviation of the wind. The 

pond was simulated with a constant wind, in which neither wind 

magnitude nor wind direction changes. Other inputs and para- 

meters, such as inflow flowrates and bacteria pollute-graphs of 

the inlets, remained the same as those of the actual event. Fig- 

ure 16 shows the bacteria distribution at the six grab sampling 

locations considering the averaged wind. None of the cases cor- 

responding to September 20, 2007 nor August 26, 2007 follow- 

ed the bacteria concentration pattern of the actual event, and 

only one case corresponding to May 28, 2007 followed the pat- 

tern. In addition, the difference between the bacteria concentra- 

tion corresponding to the actual event and that of the averaged 

wind was relatively high. Therefore, predicting the bacteria dis- 

tribution with a constant wind is not considered practical.  

The modeled concentration of bacteria in the withdrawal 

location after the three actual events were compared with that 

of stronger and weaker wind. Figure 15 shows the comparison. 

The modeled bacteria concentration at the withdrawal location 

in all of cases was lower than the average of that of the six loca- 

tions. However, in most of the cases the concentration in the 

 
(c) 
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withdrawal location was higher than the minimum of the six lo- 

cations. Therefore, the withdrawal was not the optimal location 

anymore. This might indicate the large impact of wind magni- 

tude on the bacteria distribution in the pond.  

4. Conclusions  

The integrated hydrological and CFD model (IHCFD), 

which was initially developed to simulate bacteria fate and trans- 

port in the Inverness stormwater pond, Calgary, AB, Canada 

for the purposes of reusing the stormwater, was further modi- 

fied, verified and studied for sensitivity in this work. The model 

was verified for both fluid flow and bacteria distribution against 

the data collected from the pond. The fluid flow verification was 

performed for a wind driven flow, and good agreement was ob- 

served. The bacteria distribution data showed some parts of the 

pond became more contaminated between 2007 and 2017; how- 

ever, the tip of the west wing was found to be the most contam- 

inated location of the pond. The model results showed a good 

agreement with the collected data. Once verified, the impact of 

the model’s assumptions on output were assessed using a sensi- 

tivity analysis. IHCFD was run a copious number of times to 

assess the impacts of different inputs on the bacteria distribu- 

tion in the pond. The impacts were more closely studied for the 

withdrawal location, which was determined as the optimal lo- 

cation for pulling stormwater from the pond for later reuse. The 

particle size that E. coli predominantly attach to was one of the 

assumptions studied and it was found that increasing particle 

size generally decreases the bacteria concentration in the grab 

sampling locations due to the settling. However, no noticeable 

difference was found in the bacteria distribution at the study lo- 

cations when the attached particle size was increased from 10 

~ 20 µm to 20 ~ 50 µm. Attachment rate was also studied and 

it was found that with non-settling sediment, the bacteria con- 

centration decreases in all study locations with decreasing the 

attachment rate. However, with settling-sediment this decrease 

only occurred at the most contaminated location. The impact of 

rainfall distribution was also assessed by comparing bacteria 

distribution in the pond arising from 4 different synthetic rain- 

fall distributions with that produced by the actual rain. It was 

found that for design purposes or if there is a lack of collected 

data, synthetic hyetographs could be used to determine pond 

hot spots – locations with the highest level of contamination – 

as well as the optimal location for withdrawal. In addition, the 

model was run for several wind directions and wind magnitudes. 

Results revealed that the impact of wind direction is event spe- 

cific and location specific. Changes in wind magnitude resulted 

in changes to the optimal withdrawal. In general, wind was found 

to play a critical role in the bacteria distribution of the pond.  
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