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ABSTRACT. The change of soil moisture has significant influence on the surface energy distribution and evapotranspiration process 

and causes the climatic environment changes. It is thus urgent to detect soil moisture facing climate change problems. Based on apparent 

thermal inertia method, the GLDAS soil moisture of the layer in 0 ~ 10 cm, 10 ~ 40 cm, 40 ~ 100 cm, 100 ~ 200 cm under the ground 

surface are proceeded for downscaling and the monthly soil moisture are obtained by combination of MODIS data. Statistics of precipita-

tion and temperature of 13 meteorological stations in the Three River Headwater Region (TRHR) are collected to analyze the correlation 

between soil moisture change and temperature and precipitation. The correlation between soil moisture and evapotranspiration (ET) are 

analyzed by using the surface energy balance system model to calculate the average evapotranspiration in the study area. The result indi-

cated that (1) Apparent thermal inertia (ATI) is positively correlated with soil depths in the four layers below the surface and has the best 

correlation with 0 ~ 10 cm soil moisture. Soil moisture increases with soil depth. Soil moisture is lowest under 0 ~ 10 cm depth while highest 

under 10 ~ 40 cm on average. (2) In terms of spatial distribution of TRHR, soil moisture is higher in the northwest and southeast, but lower 

in the southwest and northeast than average. The temporal variation of the soil moisture in one year was high in summer and low in winter, 

and the average annual soil moisture increased with time. (3) Soil moisture is negatively correlated with temperature and positively corre-

lated with precipitation. There is a positive correlation between soil moisture and evapotranspiration. The linear regression coefficient 

of determination R2 is 0.8489. 
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1. Introduction 

Soil moisture is an important indicator of ecological envi-

ronment monitoring in arid and semi-arid areas (Mohseni and 

Mokhtarzade, 2020). At the same time, it is the most sensitive 

limiting factor affecting vegetation growth (Seo et al., 2020). It 

has an important protective effect on the surface soil, and the 

water-deficient surface soil is susceptible to wind erosion (Ra- 

khmatulina et al., 2021). Due to its far-reaching impact on flood 

forecasting, weather and climate forecasting, crop growth moni- 

toring and water management applications, it is very important 

to obtain soil moisture information (Singh et al., 2021). Changes 

in soil moisture will cause changes in soil thermal properties, 

surface optical properties, and atmospheric moisture transmis- 

sion, which will affect meteorological elements and are ex- 

tremely sensitive to climate change (Kang et al., 2017). It is 

very important to accurately obtain the temporal and spatial 

distribution of soil moisture on a regional and global scale be- 

cause it controls the exchange of energy, moisture and carbon  

 
* Corresponding author. Tel.: +8613693096590; Fax: +86-10-82321081. 

E-mail address: jinxm@cugb.edu.cn (X. M. Jin). 

 

ISSN: 2663-6859 print/2663-6867 online 

© 2021 ISEIS All rights reserved. doi:10.3808/jeil.202100067. 

between the land surface and the atmosphere (Lei et al., 2014). 

A deep understanding of these processes has improved the re- 

search on simulating climate and terrestrial hydrology, which 

is helpful for hydrological simulation and the prediction of na- 

tural disasters (Li et al., 2021). In the arid and semiarid regions 

of our country, evaporation from land surface accounts for a 

high proportion of precipitation (MacSween and Edwards, 2021). 

Precipitation is the main supplementary source of soil moisture, 

and evapotranspiration is closely related to soil moisture (Tak- 

tikou et al., 2016). 

The Three River Headwaters Region (TRHR) is located in 

the hinterland of the Qinghai-Tibet Plateau and is the most im-

portant ecological protection area in China (Zheng et al., 2020). 

Its ecological environment has a huge ecological effect on the 

global natural environment, which has a wide-ranging impact 

on the survival and development of mankind (Li et al., 2021). 

Sustainable ecological restoration and protection at different 

scales have been widely accepted and implemented as an im-

portant means to deal with environmental degradation (Bai et 

al., 2020). Soil moisture is the factor that has the greatest impact 

on the above-ground biomass of alpine grasslands in permafrost 

regions of the Qinghai-Tibet Plateau (Fan et al., 2019). Through 

remote sensing quantitative inversion methods, large-scale long-

sequence data can be obtained to facilitate macroscopic and dy- 
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Table 1. Information of Weather Stations 

No. Station Latitude (°) Longitude (°) Hight(m) 

52908 Wudaoliang 35.22 93.08 4612.2 

52943 Xinhai 35.58 99.98 3323.2 

56004 Tuotuo 34.22 92.43 4533.1 

56018 Zaduo 32.88 95.28 4066.4 

56021 Qumalai 34.12 95.08 4175.0 

56029 Yushu 33.00 96.97 3716.9 

56033 Maduo 34.92 98.22 4272.3 

56034 Qinshui 33.08 97.13 4415.4 

56046 Dari 33.75 99.65 3967.5 

56065 Henan 34.73 101.60 13500.0 

56067 Jiuzhi 33.43 101.48 3628.5 

56125 Nangqian 32.20 96.47 3643.7 

 

namic monitoring of soil moisture changes (Dong et al., 2020). 

There will be great differences and uncertainties in the research 

results for different types of research areas, different methods 

and different time scales (Zhao et al., 2014). Wang et al. (2018) 

explored the influence of precipitation and temperature on soil 

moisture of different land cover types in the Tarim River Basin 

from 2001 to 2015. Partial correlation analysis and multiple 

linear regression analysis showed that precipitation in the study 

area had a positive feedback on soil moisture. The temperature 

has negative feedback, and the contribution of precipitation to 

the change of soil moisture is greater than that of temperature. 

Feng and Liu (2015) used cluster analysis to analyze the com- 

bined effects of precipitation and air temperature under differ- 

ent land covers in the Poyang Lake Basin in China from 2003 

to 2009. Dari et al. (2021) assimilated multi-source remote-

sensed PSM into a high spatial resolution distributed hydrolog- 

ical model to improve the original remote-sensed soil moisture. 

The contribution of air temperature to soil moisture was greater 

than precipitation, and the impact of different surface tempera- 

tures on air temperature was even greater (Yao et al., 2019). 

During the growing season, they are significantly negatively 

correlated with atmospheric temperature. However, few research 

works focus on the combination of ATI method from MODIS 

products and GLDAS data to get the result of 4 layers soil mois- 

ture underground and analysis the impact factors of soil mois- 

ture such as precipitation, temperature and evapotranspiration 

in semi-arid areas (Martínez-Fernández et al., 2021). 

In this study, the TRHR is selected as the research area. 

MODIS data is used to calculate the apparent thermal inertia 

(ATI) spatial distribution. And then the GLDAS data is used to 

obtain the soil moisture of underground 0 ~ 10 cm, 10 ~ 40 cm, 

40 ~ 100 cm, and 100 ~ 200 cm. Its distribution and influencing 

factors were analyzed and discussed. The results reveal the tem- 

poral and spatial distribution of soil moisture in the TRHR and 

the correlation between meteorology, precipitation and soil mois- 

ture, and the correlation and influence mechanism between soil 

moisture and evapotranspiration. 

2. Methodology 

2.1. Data Collection 

In this study, the diurnal temperature and surface albedo 

products of moderate resolution MODIS spectral reflectance 

collected by aqua from January to December 2015 were used 

to retrieve regional soil moisture. It mainly includes land sur- 

face reflectance data set MYD09A1 (spatial resolution 500 m) 

and land surface temperature data set MYD11A2 (spatial res- 

olution 1000 m), with time resolution of 8 days, 4 scenes per 

month, row number h25v05 and h26v05, totaling 576 scenes. 

The data is from the earth observation system data and informa- 

tion system (EOSDIS) of NASA website (http://reverb.echo.na 

sa.gov/reverb/). In order to keep the consistency of the research 

data, all the data were projected, converted, stitched and syn- 

thesized, and resampled to 500 m resolution. 

GLDAS (the global land data assimilation system) is used 

to calculate soil moisture at different depths (four layers). The 

GLDAS data selected in this paper is GLDAS-2_0.25 with tem- 

poral resolution of 1 month and spatial resolution of 0.25°. Among 

the 36 bands of GLDAS data, four bands are selected to calcu- 

late soil moisture, which are 22 ~ 25 layers of data, representing 

0 ~ 10 cm, 10 ~ 40 cm, 40 ~ 100 cm and 100 ~ 200 cm soil mois- 

ture data under the surface, respectively, with the unit of kg·m-3. 

The meteorological data needed for statistical analysis of 

the influence of meteorological factors on soil moisture comes 

from China Meteorological science data sharing service net- 

work (http://data.cma.cn). The monthly data set of climate (pre- 

cipitation, temperature) data of China’s international ground ex- 

change station based on. In this study, a total of 13 meteorolog- 

ical stations in the study area were used to obtain the meteoro- 

logical data of the study area by averaging the meteorological 

data provided by 13 meteorological stations. 

 

2.2. Apparent Thermal Inertia 

Apparent thermal inertia is a physical quantity that resists 

changes in the temperature of ground objects, reflects the ener- 

gy exchange capacity between a substance and the surrounding 

environment, and can indicate changes in soil moisture. The ad- 

vantages of this method are convenient calculation, low cost, 

and relatively high accuracy for low vegetation coverage areas, 

and high accuracy in the case of low vegetation coverage (NDVI 

≤ 0.35) (Van Doninck et al., 2011). Since the annual NDVI 

range of the study area is 0.25 ~ 0.30, and the multi-year aver-

age value is 0.27, the apparent thermal inertia method is suit- 

able for the calculation of soil moisture in this area (Qin et al., 

2013; Lei et al., 2014). 
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Figure 1. The geographical location of the source area of the TRHR. 

 

The definition expression of apparent thermal inertia is: 

 

  P K c  (1) 

 

where P is the apparent thermal inertia (J·m-2·K-1·s1/2), K is the 

thermal conductivity (J·m-1·s-1·K-1), and ρ is the density (kg·m-3), 

c is the specific heat capacity of the soil at constant pressure 

(J·kg-1·K-1). 

The calculation model of conventional apparent thermal 

inertia involves many physical parameters that are difficult to 

obtain, such as near-land surface temperature, surface tempera- 

ture, surface roughness, air humidity, wind speed, etc. And the 

calculation is large and complicated (Verstraeten et al., 2006). 

Therefore, the simplification is based on the principle of energy 

balance, and only the surface temperature difference and sur- 

face reflectance are considered, and the influence of factors such 

as latitude and solar altitude is not calculated. The form of la- 

tent heat evapotranspiration is simplified. The simplified cal- 

culation formula is: 

 

1  
  

  d n

A
ATI

T T





 (2) 

 

where ATI represents the apparent thermal inertia, which is a 

dimensionless relative value, A represents the full-band albedo 

of the surface, Td and Tn represent the highest and lowest sur-

face temperature in a day, respectively. The visible light, near-

infrared and thermal infrared can be passed through MODIS 

data. 

The surface albedo A refers to the ratio of the total reflect- 

ed radiant flux on the surface to the incident radiant flux. The 

calculation of A in this paper adopts the wide-band albedo in- 

stead of the full-band albedo algorithm. The calculation formu- 

la is as follows: 

 

1 2 3 4  0.16   0.291   0.243   0.116  A           

5 7         0.112   0.081   0.0015    (3) 

where α1, α2, α3, α4, α5, α7 are the surface reflectance in the 

bands 1, 2, 3, 4, 5, and 7 respectively. 

When using apparent thermal inertia to retrieve soil mois- 

ture, there is currently no unified theoretical model. This paper 

uses the simplest and most widely used linear empirical formu- 

la model for fitting, the formula is as follows: 

 

      W a b ATI    (4) 

 

where W is the soil moisture, and a and b are coefficients. 

3. Overview of Study Area 

The TRHR is located in the hinterland of the Qinghai-Ti-

bet Plateau, under the jurisdiction of Yushu City, Golmud City, 

Tanggula Township, and 20 counties including Hainan Tibetan, 

Guoluo Tibetan, Huangnan Tibetan, and Yushu Tibetan, with 

a total area of 34.30 × 104 km2. It accounts for about 50.3% of 

the total area of Qinghai Province (Zhang et al., 2018). It is the 

most important ecological protection area in China and an im-

portant source of freshwater resources in China and Asia. 

Affected by geological movement, the altitude of the study 

area varies greatly, and there are many mountains and moun- 

tains, relatively high altitude, low temperature, there are a large 

number of seasonal frozen soil and permafrost, which will have 

a certain impact on the temporal and spatial distribution of soil 

water and groundwater (Figure 1). The spatial distribution of 

soil has obvious vertical distribution from high to low in alpine 

desert, alpine meadow, gray cinnamon soil, chestnut soil and 

mountain forest soil (Jiang et al., 2017). This area not only has 

large surface runoff and abundant surface water resources, More-

over, the groundwater reserves are large enough, the buried 

depth is relatively shallow, the water quality is good, and the 

extraction rate is low. Groundwater is mainly distributed in hilly 

areas, and the distribution types are mainly bedrock structural 

fissure water and clastic rock weathered pore fissure water, 

with significant anisotropy. Groundwater replenishment methods 

are mainly vertical replenishment of precipitation and replen-
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ishment of melted ice and snow. The water cycle time period is 

updated quickly, so the salinity is low (Zheng et al., 2018). 

 

 
 

Figure 2. Average meteorological elements of TRHR in  

2015 ~ 2017. 

 

Due to its special geographical location, abundant natural 

resources and strong ecological functions, the Three Rivers 

source has become an important nature reserve on the Qinghai-

Tibet Plateau. However, due to the high altitude and harsh natu-

ral conditions in this area, its ecosystem is very fragile. Its eco-

logical structure is simple, and its ability to resist disturbance 

and self-recovery is low. The ecological environment problems 

caused by it directly restrict the economic development of the 

downstream and affect the ecological environment of the down- 

stream. Soil moisture is a key factor affecting the ecological 

process, ecological carrying capacity and restoration of degrad- 

ed grasslands on the Qinghai-Tibet Plateau. The increase of soil 

moisture during the growing season of alpine grassland is bene- 

ficial to the growth of grassland vegetation (Liang et al., 2016). 

The annual average temperature is 0.76 ºC in the study pe- 

riod as shown in Figure 2. The highest temperature was in Au- 

gust, with an average temperature of 10.99 ºC; the lowest tem- 

perature is –11.68 ºC in January. Generally speaking, the tem- 

perature is high in summer and low in winter. The annual aver- 

age precipitation is 478.01 mm, in which the precipitation from 

June to September accounts for the largest proportion, account- 

ing for 68.74% of the annual average precipitation, while the 

precipitation from November to February is very small. The av- 

erage annual evapotranspiration is 463.77 mm. The annual sun- 

shine hours are 2300 ~ 2900 h, the sunshine percentage is 50 ~ 

65%, and the annual radiation is 5500 ~ 6800 mJ/m2. Sandstorm 

days are generally about 19 days (Feng et al., 2018). The study 

area is particularly sensitive to climate change and may cause 

serious disturbance to the ecosystem. 

4. Results and Discussion 

4.1. Distribution of ATI 

It can be seen from the inversion results of apparent ther- 

mal inertia that the apparent thermal inertia in Northeast and 

southwest is relatively low, especially in the Southwest (the source 

region of the Yangtze River). The low ATI value often occurs 

from January to April in winter, with the lowest ATI < 0.03. 

However, ATI is relatively high in the southeast and northwest, 

especially in the southeast. High ATI values often occur from 

June to October in summer, with the highest ATI > 0.05. The 

change trend with time mainly shows that the seasonal varia-

tion is significant, the average ATI value in summer is higher, 

and the average ATI value in winter is lower. The overall space 

is relatively unchanged. 

The spatial distribution of annual ATI values is similar 

(Figure 3) and consistent with that of monthly ATI, with an in- 

creasing trend in time series, which is 0.0378 in 2015, 0.0387 

in 2016 and 0.0404 in 2017. The dynamic change of time series 

(Figure 4) shows that the change in 2016 is relatively large, 

while the change in 2015 and 2017 is relatively small, and the 

curve is relatively flat. In 2016, there was an obvious drought 

in the first half of the year and a humid change in the second 

half of the year, with a large range of changes, which may be 

due to the government investment to take measures to protect 

and intervene, which has initially achieved certain results. By 

2017, it still maintained a high ATI status, and the annual ATI 

value increased year by year. On the whole, ATI values change 

greatly within a year, with a maximum difference of 0.025. The 

interannual variation is small and the trend is similar. 

 

4.2. Distribution of Soil Moisture 

The application scope of the apparent thermal inertia meth- 

od is the low vegetation coverage area, while the TRHR is a 

semiarid area, the vegetation type is mainly grassland, the ve- 

getation coverage is low, and thus the apparent thermal inertia 

method can be used to calculate the soil moisture. In ENVI, 

ATI data obtained by apparent thermal inertia method need to 

be converted to soil moisture data by downscaling equation. 

Correlation analysis was conducted between ATI and GLDAS 

soil water content data of 0 ~ 10 cm, 10 ~ 40 cm, 40 ~ 100 cm 

and 100 ~ 200 cm below the surface, and the downscaling equa- 

tion was obtained (Figure 5). It can be seen from the figure that 

the four layers of soil moisture data at different depths have a 

good linear fitting with ATI, and the correlation coefficients are 

all above 0.5, which can be used as a downscaling equation. 

Through the obtained ATI, the soil moisture at different depths 

can be calculated. The coefficient of determination R2 = 0.6008 

at 0 ~ 10 cm depth is the highest, the fitting is the best, and R2 

= 0.5071 at 40 ~ 100 cm depth is the lowest. 

From the spatial distribution map of soil moisture calculat- 

ed by MODIS and GLDAS (Figure 6), it can be seen that the 

spatial distribution of soil moisture in the four layers is similar. 

Low in the northeast and southwest-mainly concentrated in the 

middle part of the source area of the Yangtze River where veg- 

etation coverage is small and precipitation is small. The soil 

moisture in the first layer is mainly 23 ~ 25 kg/m3, and the soil 

moisture in the second layer is mainly 72 ~ 75 kg/m3, the soil 

moisture of the third layer is mainly 137 ~ 144 kg/m3, and the 

soil moisture of the fourth layer is mainly 260 ~ 272 kg/m3. 

High in the northwest and southeast-mainly concentrated in the 

source area of the Lancang River, the source area of the Yellow 

River, and other lower-elevation rivers, where there is a lot of 

water, vegetation coverage, and precipitation, and the northwest 
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Figure 3. Spatial distribution of average annual ATI in the TRHR from 2015 to 2017. 

 

 
 

Figure 4. Dynamic changes of ATI time series from  

2015 to 2017. 

 

side of the Yangtze River source area and other higher-altitude 

mountains with more ice and snow melt In areas with low tem- 

perature, the soil moisture of the first layer is mainly 25 ~ 27 

kg/m3, the soil moisture of the second layer is mainly 75 ~ 78 

kg/m3, the soil moisture of the third layer is mainly 144 ~ 151 

kg/m3, and the soil moisture of the fourth layer Mainly 272 ~ 

284 kg/m3. The spatial distribution of soil moisture has a good 

corresponding relationship with ATI. There are big differences 

in altitude, temperature, and precipitation between areas with 

high soil moisture and areas with low soil moisture on the cross 

section. As the soil depth deepens, the soil moisture increases 

significantly. 

Soil moisture is an important indicator of the ecological 

environment, and its temporal change law has always been an 

important content of scientific research, which is related to the 

quality of vegetation growth and the degree of land desertifi- 

cation. According to the downscaling linear fitting method, the 

soil moisture results can be inverted. ArcGIS can be used to 

calculate the three-year average soil moisture of all pixels at 

different depths in the Three Rivers Source Region to statis- 

tically analyze the soil layers of different depths in the Three 

River Source Region from 2015 to 2017. The changes of month-

ly soil moisture during the year and between the years have a 

certain reference significance for the changes of the ecological 

environment in the plateau area. 

As shown in Figure 7(a), on a time scale, the three-year av- 

erage annual variation of soil moisture at different depths under 

the ground surface in the study area is high in summer and low 

in winter. The monthly average soil moisture is highest in Septem-

ber and lowest in February. The intra-year changes of the 4 layers 

are consistent, and the range of changes becomes more obvious 

as the depth increases. Fitting the average depth of each layer 

and the corresponding average soil moisture (Figure 7(b)) shows 

that the soil moisture in the TRHR increases linearly with the 

increase of depth. The soil moisture in the first layer is the low- 
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Figure 5. Correlation analysis of soil moisture data between ATI and GLDAS data. 

 

 

Figure 6. The spatial distribution of soil moisture at different depths in the TRHR in 2017. 
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est, the soil moisture in the fourth layer is the highest, and the 

soil moisture in the fourth layer is the highest. The average soil 

moisture of the second layer is 67.56% higher than that of the 

first layer, the third layer is 47.87% higher than the second lay-

er, and the fourth layer is 47.79% higher than the third layer. 

The interannual variation of soil moisture in the four layers 

showed an increasing trend, and the trend became more obvi- 

ous with the increase of soil depth (Figure 8). The change range 

in 2016 was more significant, with an obvious peak in Septem- 

ber 2016, and the soil moisture was 25.5685 kg/m3, while the 

change range in 2015 and 2017 was smaller. The interannual 

variation of the same layer is small. 

 

 
 

Figure 7. Annual average soil moisture change 

characteristics. 

 

 
 

Figure 8. Time series variation characteristics of monthly soil 

moisture from 2015 to 2017. 

 

4.3. Analysis of Influencing Factors of Soil Moisture 

Meteorological factors are factors that have a great influ- 

ence on soil moisture. Analyzing the response characteristics 

of meteorological factors to soil moisture will help explain the 

relationship between regional soil moisture and climate factors. 

Precipitation and temperature are more related to soil moisture. 

This study separately counts the monthly average temperature 

and monthly total precipitation data of 13 meteorological sta- 

tions in the study area from 2015 to 2017 for 12 months each 

year. The average value of the meteorological data of 13 me- 

teorological stations is used to represent the overall precipita-

tion and temperature data of the TRHR. Perform correlation 

analysis. Analyze the variation law of average soil moisture with 

precipitation and temperature for 36 months for 3 years, month 

by month, and analyze the influencing factors of soil moisture 

change. The changing trend of meteorological elements is shown 

in Figure 9. The temperature and precipitation values are large 

in summer months and small in winter months. The average 

temperature and precipitation in 2015 ~ 2017 are generally in-

creasing. For soil moisture, the closer it is to the surface, the 

greater the influence of climatic factors; the deeper the distance 

from the surface, the greater the influence of groundwater. There-

fore, this article establishes the relationship between the first lay-

er of soil moisture data and meteorological factors. Discuss the 

influence of climate factors on soil moisture. 

The peak temperature occurs in the summer months, and 

August 2016 has the highest temperature in three years at 12.7 ℃. 

Due to the limitations of the apparent thermal inertia method 

and the presence of a large amount of frozen soil in winter months, 

the calculation of soil moisture values in months with lower 

temperatures is not accurate enough, so we focus on the charac-

teristic months of each year, namely June-September. There-

fore, the temperature and soil moisture data from June to Septem-

ber 2015 ~ 2017 are used for linear fitting. As can be seen from 

Figure 10a, the slope is –0.2512, which is negatively correlated, 

and the determination coefficient is higher, which is 0.6842. 

The overall results show that temperature has a greater impact 

on surface soil moisture. The above research shows that there 

is a significant negative correlation between the soil moisture 

and temperature in the characteristic month of each year. The 

higher the temperature, the lower the soil moisture, and the lower 

the temperature, the higher the soil moisture. Precipitation is 

high in summer months and low in winter months, and the pre-

cipitation approaches zero. It is not difficult to find a positive 

correlation between soil moisture and precipitation in months 

with sufficient rainfall. However, the two are not synchronized 

in time. After rainfall infiltration and redistribution of soil wa-

ter, the change in soil moisture slightly lags behind the change 

in precipitation. Taking three-year characteristic months (June 

to September) precipitation and soil moisture data to compare 

the correlation between the two by linear fitting (Figure 10(b)), 

it is found that the slope is greater than 0, showing a positive 

correlation, and the coefficient of determination is 0.7351, which 

is slightly higher than the temperature correlation with soil mois-

ture, therefore, the influence of precipitation on soil moisture is 

also obvious. 

Evapotranspiration includes soil surface evaporation, wa- 

ter surface evaporation, and plant transpiration. The monthly 

and annual evapotranspiration used in this paper refer to the 
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Figure 9. Monthly changes of meteorological elements in the TRHR from 2015 to 2017. 

 

 

Figure 10. The influence of temperature and precipitation on soil moisture. 

 

water consumption per unit area of soil surface, water surface, 

and plant leaf surface in a certain month and year, in mm. There 

is a strong relationship between soil moisture and evapotranspi- 

ration in the mechanism of action. The surface energy balance 

system (SEBS) model is used to calculate the monthly average 

daily evapotranspiration for a total of 36 months in 12 months 

per year from 2015 to 2017. From the comparison of the inter-

annual soil moisture and evapotranspiration space from 2015 

to 2017 in Figure 11, it can be seen that the spatial distribution 

of the two is very similar. The soil moisture and evapotranspi- 

ration in the northwest and southeast of the study area are rela- 

tively high. The soil moisture is concentrated in 25 ~ 27 kg/m3, 

and the soil moisture and evapotranspiration in the northeast 

and southwest are relatively low, and the soil moisture is con- 

centrated in 23 ~ 25 kg/m3. In 2015, the spatial distribution of 

soil moisture and evapotranspiration both have greater spatial 

difference, while the spatial dispersion in 2016 and 2017 is small, 

the distribution of the mean value of soil moisture and evapo-

transpiration at each pixel point is more concentrated, and the 

spatial difference is small. 

According to the calculation results of evapotranspiration, 

it is found that the regions with higher evapotranspiration and 

the regions with higher soil moisture are more consistent in spa-

tial distribution. Therefore, the regional statistics module in Arc-

GIS counts the soil moisture for a total of 36 months from 2015 

to 2017, and analyzes the month Average soil moisture and month-

ly evapotranspiration of the corresponding month, multiply the 

calculated daily evapotranspiration by the number of days in 

the month to obtain the monthly evapotranspiration and the month-

ly average soil moisture content retrieved from the correspond-

ing month for correlation analysis, because the summer months 

have higher temperatures The apparent thermal inertia method 

is more suitable, so the correlation analysis is carried out with 

the soil moisture and monthly evapotranspiration of the charac-

teristic month. The analysis result is shown in Figure 12. The 

determination coefficient of the two is as high as 0.8489, which 

shows that soil moisture and evapotranspiration are significant-

ly positively correlated with each other, which affects the sur-

face water cycle in the study area. 

5. Conclusions 

Based on the collection of MODIS, DEM, GLDAS, mete- 

orology and other data in the TRHR, this study uses quantita- 

tive remote sensing technology, based on the apparent thermal 

inertia method to retrieve the apparent thermal inertia of the 

TRHR, and calculates and analyzes the apparent heat Correla- 

tion between inertia and GLDAS soil moisture data at different 

depths of 4 layers underground, a correlation equation of two 

variables is established as a downscaling equation. The down-  
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Figure 11. Spatial distribution of average soil moisture and evapotranspiration from 2015 to 2017. 

 

 

Figure 12. The effect of evapotranspiration on soil moisture. 

 

scaling of GLDAS soil moisture data obtains the temporal and 

spatial distribution of soil moisture in the source area of the 

Three Rivers. Statistically analyze the multi-year variation pat- 

terns of soil moisture and meteorological elements (mainly in- 

cluding precipitation and temperature) in the Three-River Source 

area, and analyze the impact of meteorological elements on the 

time series of soil moisture; estimate the evapotranspiration in 

the Three-River Source area based on the principle of surface 

energy balance, and make statistics and statistics. Quantitative 

analysis of evapotranspiration characteristics over the years 

and the correlation between soil water content and evapotrans- 

piration. In summary, the following conclusions are obtained: 

(1) The apparent thermal inertia (ATI) obtained by the inver- 

sion of the apparent thermal inertia method has a good cor- 

relation with the 4 layers of soil data below the surface of 

GLDAS, and the correlation with the 0 ~ 10cm soil mois-

ture data is the best. The inter-personal determination co-

efficient R2 is 0.6008, so the correlation equation between 

ATI and GLDAS soil moisture data can be used as a down- 

scaling equation to downscale the GLDAS soil moisture 

data to obtain the soil moisture in the source area of the 

Three Rivers. 
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(2) The soil moisture increases approximately linearly with 

the increase of depth. The first layer has the lowest soil 

moisture at 0 ~ 10 cm, and the three-year average soil mois-

ture is 24.2293 kg/m3. The fourth layer has the highest soil 

moisture at 100 ~ 200 cm, and the three-year average soil 

moisture. It is 274.4690 kg/m3. The temporal and spatial 

changes of soil moisture in the four layers are consistent. 

As the depth increases, the change is more significant, and 

the soil moisture value fluctuates more. Spatially, soil mois-

ture is high in the northwest and southeast, and low in the 

northeast and southwest. In terms of time, the changes in 

soil moisture during the year have obvious seasonal charac-

teristics. The summer months are high and the winter months 

are low. The inter-annual soil moisture in 2015 ~ 2017 

showed a slow increase trend. 

(3) Soil moisture has a strong correlation with meteorological 

factors and evapotranspiration. By establishing the corre- 

lation equation between soil moisture and air temperature 

and precipitation, it is concluded that soil moisture is neg- 

atively correlated with air temperature and positively cor- 

related with precipitation, and the effect is obvious. The 

spatial distribution of soil moisture and evapotranspiration 

is highly consistent. The area with high soil moisture has 

high evapotranspiration, and the area with low soil mois- 

ture has low evapotranspiration. The time series are posi- 

tively correlated and have obvious seasonality, which is 

characterized by high soil moisture and large evapotran- 

spiration in summer months, and low soil moisture and 

low evapotranspiration in winter months. 

In this study, the meteorological data is only a brief aver- 

age processing, there is a certain degree of error, follow-up can 

be established by computer model, considering the terrain, the 

distribution of meteorological stations and other factors to get 

more accurate meteorological data. Moreover, the most concise 

linear correlation is used in the correlation analysis, but its re- 

action mechanism is very complex, and the follow-up work can 

try different correlation models to find the optimal solution.The 

causes of spatial distribution were not discussed in depth. In the 

follow-up study, the soil moisture can be calculated by terrain 

and vegetation coverage area, and the correlation analysis can 

be carried out to explore the possible influencing factors of spa- 

tial distribution of soil moisture in TRHR. 
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