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ABSTRACT. Spatial-temporal patterns of river water quality, the identification of pollution sources and contaminated areas are crucial 

to water environment protection and sustainable development of the river basin. In this study, spatial-temporal characteristics of river 

water quality in the Yihe river basin were investigated through multivariate analysis methods, including principal component analysis 

(PCA), cluster analysis (CA), discriminant analysis (DA), and one-way ANOVA. The water quality indicators (Hydrogen ion concentra-

tion (pH), electric conductivity (EC), dissolved oxygen (DO), turbidity, chemical oxygen demand (COD), total phosphorus (TP), and 

ammonia nitrogen (NH4
+-N)) were investigated at 17 sampling sites in three periods (i.e., high-, mean-, low flow period) during 2016 ~ 

2017. The results show that: (1) PCA served to extract and recognize the most significant indicators affecting water quality in the Yihe 

river basin, i.e., pH, EC, COD, and NH4
+-N. (2) CA divided the Yihe river basin into three groups with similar water quality features, 

namely the upper, middle, and lower reaches. (3) DA demonstrated strong dimensionality reduction ability with the accuracy of clustering 

was 94.1%, and only a few indicators (i.e., DO, EC, turbidity, NH4
+-N, and TP) could reflect the spatial variations in water quality. (4) 

One-way ANOVA indicated that the water quality was the worst in the lower reach of Yihe river basin during the mean-flow period, fol-

lowed by which in the upper and middle reaches during the high-flow period. (5) The spatiotemporal characteristics of water quality were 

mainly restrained by human factors (e.g., the construction of highway and agricultural activities), climate change (e.g., precipitation and 

temperature), and natural environments (e.g., topography). 
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1. Introduction 

Rivers are the most important water bodies on land (Oki 

and Kanae, 2006; Vörösmarty et al., 2010), and most ancient 

civilizations in the world are originated in large river basins 

(Mir and Gani, 2019). Excellent water quality and adequate wa-

ter quantity are critical to human health (Pejman et al., 2009; 

Zhang et al., 2012) and the sustainable development of the eco-

nomy in the river basin (Ravindra et al., 2003; Wu et al., 2018). 

Humans have made the best use of water resources through in-

dustrialization, irrigation, and engineering measures (e.g., dams, 

reservoirs and water transfer across river basins) (Oki and Kanae, 

2006; Wang et al., 2016). However, the demand for high-qual-

ity water resources is growing consistently, nearly 80% of the 

world’s population still faces serious water security threats (Oki 

and Kanae, 2006; Vörösmarty et al., 2010). River is the most vul- 
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nerable water body to contain pollution from agricultural runoff, 

domestic and industrial sewage (Singh et al., 2005; Varol et al., 

2012; Wang et al., 2013; Liu et al., 2019; Chaudhuri et al., 2020) 

under the multiple effects of natural processes (e.g., climate change, 

soil erosion, and weathering of bedrock) (Vega et al., 1998; Oke-

tola et al., 2013; Shrestha and Wang, 2020), human activities 

(e.g., agricultural, urban and industrial activities) (Vitousek et 

al., 1997; Paul and Meyer, 2001; Sickman et al., 2007; Zhang 

et al., 2018; Yu et al., 2020), and increasing water demand 

(Vörösmarty et al., 2010). With the increasing degradation of 

river water quality, including eutrophication, organic matter, 

and heavy metal pollution (Vitousek et al., 1997; Carpenter et 

al., 1998), its disastrous impacts on drinking water safety, indus-

trial and agricultural production, and aquatic biodiversity have 

attracted wide attention (Carpenter et al., 1998; Wang et al., 

2017). Consequently, it is particularly important to control river 

pollution and prevent the degradation of river water quality. 

Moreover, previous study revealed that water quality is appar-

ently spacetime dependence, thus it is necessary to monitor and 

evaluate the river water quality in the river basin in different 

periods (Strobl et al., 2008; Pérez et al., 2017; Sinha et al., 
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2019). Climate change also impacts water quality directly or 

indirectly, such as associated changes in precipitation patterns 

(i.e., precipitation amount, intensity, and frequency) affect the 

mount of nitrogen transported to downstream water bodies 

(Sinha and Michalak, 2016; Sinha et al., 2019). To help the provin-

cial government protect the river water environment and control 

river pollution, it is very crucial to conduct a thorough exami-

nation of the spatio-temporal characteristics of water quality 

and the associated influencing factors based on monitoring data. 

Previously, a number of efforts about water quality in river 

basins have been made in many countries and regions, through 

which the spatiotemporal similarities and differences of varies 

water quality indicators were analyzed at different sampling 

points over multiple periods (Vitousek et al., 1997; Ravindra et 

al., 2003; Bellos and Sawidis, 2005; Singh et al., 2005; Kan-

nel et al., 2007; Sickman et al., 2007; Varol et al., 2012; Wang 

et al., 2013; Putro et al., 2016; Rigi et al., 2019). Multivariate 

statistical analysis methods are reliable tools for water quality 

assessment and water pollution problem treatment (Singh et al., 

2004, 2005; Igibah and Tanko, 2019). Due to their excellent 

performance in reducing the data dimension, extracting poten-

tial information, and verifying the spatial and temporal changes 

in water quality, multivariate statistical tools such as principal 

component analysis (PCA), factor analysis (FA), cluster analysis 

(CA), discriminant analysis (DA) and one-way analysis of 

variance (ANOVA) have been widely used to handle the massive 

and complex water quality data that generated through the water 

environment monitoring projects. Numbers studies were devot-

ed to identify the spatiotemporal variation of river water quality 

(Simeonov et al., 2003; Singh et al., 2005; Sundaray et al., 2006; 

Shrestha and Kazama, 2007; Varol et al., 2012; Li et al., 2017; 

Zhu et al., 2018; Mir and Gani, 2019; Sun et al., 2019) and the 

water environment assessment of groundwater (Andrade et al., 

2008; Zhang et al., 2012), coastal water body (Zhou et al., 2007), 

and lakes (Pejman et al., 2009; Wu et al., 2018). 

The Yiluo River is the combined name of Yihe River and 

Luohe River, which is the largest tributary below the Yellow 

River Sanmenxia Reservoir. The water quality directly affects 

the sustainable development of economy and society of the Yi-

he River Basin. However, in most of the previous studies, several 

related studies in Yiluo River Basin were mainly focused on 

heavy metal pollution (Yan et al., 2016), relationships between 

aquatic organisms and water environment factors (Lin et al., 

2019), and effects of landscape spatial heterogeneity on water 

quality (Yu et al., 2014; Liu et al., 2019). There has no report 

in studying the spatiotemporal characteristics of water quality 

in typical small watersheds in the Yihe River Basin. Furthermore, 

only a handful studies have surveyed the combined effects of 

land use variation and climate change on water quality, and these 

have only been conducted in individual river basins (Tu, 2009). 

Therefore, as the extension of previous studies, the objec- 

tive of this study is to analyze the spatiotemporal characteris- 

tics of water quality in the Yihe River Basin through multiple 

statistical methods, as well as the potential causes of pollution. 

In detail, (1) measuring the water quality data targeting on six 

indicators (i.e., pH, EC, DO, COD, TP and NH4
+-N) that moni- 

tored in 17 typical sub-basins in Yihe River Basin during three 

water periods (i.e., high-, mean-, low flow period) from 2016 

to 2017; (2) analyzing the spatiotemporal characteristics of wa- 

ter quality through four multiple statistical methods (i.e., PCA, 

CA, DA and ANOVA); (3) investigating the potential factors 

that effecting the water quality of the Yihe River Basin (such 

as human activities, climate change and natural environment). 

The results are expected to provide a scientific basis for water 

re-source management, utilization, and ecological environment 

pro-tection in the Yihe River Basin. 

 

 
 

Figure 1. Location of sampling sites and sub-basins in  

Yihe River basin. 

2. Overview of the Study Area 

The Yihe River Basin is one of the major regions in the 

Yel-low River Basin over China (33°39′ ~ 34°41′N, 111°19′ ~ 

112°54′E) (Figure 1). The extent of the Yihe River Basin and 

17 typical sub-basins were extracted through the Arc SWAT 

hydrological analysis module (Ren, 2018). These extracted ba- 

sins were based on the digital elevation model (DEM) data with 

a precision of 30 m (http://henu.geodata.cn), river network and 

terrain features (e.g., slope and altitude). Yihe River Basin is a 

transitional section of China’s topography ladder from the se- 

cond step to the third one, with an elevation from 109 to 2159 m,  
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Table 1. Statistical Description of Water Quality Indicators in the Yihe River Basin 

 
Low-Flow Period Mean-Flow Period High-Flow Period  

Max Min Mean Std. Max Min Mean Std. Max Min Mean Std. Units 

pH 8.55  7.14  7.89  0.31  8.45  7.00  8.00  0.40  8.50  6.14  7.88  0.57  — 

EC 840.50  209.50  577.32  154.44  916.00  354.50  604.82  160.92  816.00  383.00  599.51  132.04  μs•cm-1 

DO 13.38  4.43  9.51  2.09  12.44  7.36  9.26  1.33  11.96  4.42  8.35  1.72  mg• L-1 

Turbidity 28.35  0.42  13.17  9.57  20.00  0.77  13.69  6.88  19.91  3.33  10.36  5.15  NTU 

COD 71.47  7.91  37.46  19.78  33.50  2.70  18.68  9.81  25.75  4.45  12.56  5.92  mg• L-1 

NH4
+-N 4.72  0.11  0.73  1.06  19.72  0.55  4.69  4.87  3.09  0.06  0.41  0.74  mg• L-1 

TP 0.15  0.00  0.03  0.03  0.10  0.01  0.03  0.03  0.14  0.00  0.02  0.03  mg• L-1 

 

Table 2. Single Sample K-S Inspection 

 pH EC DO TUR COD NH4
+-N TP 

Normal Indicators a,b Mean 7.92 596.54 9.16 12.41 22.90 1.94 0.02 

Standard deviation 0.35 111.81 1.15 5.27 8.40 1.89 0.03 

Most Extreme Difference Absolute value 0.26 0.17 0.19 0.15 0.13 0.28 0.28 

Positive 0.10 0.17 0.19 0.11 0.13 0.28 0.25 

Negative -0.26 -0.11 -0.09 -0.15 -0.11 -0.21 -0.28 

Kolmogorov-Smirnov Z 1.06 0.70 0.77 0.60 0.52 1.17 1.15 

progressive significance (both sides) 0.22 0.71 0.59 0.86 0.95 0.13 0.14 

a. The test distribution is normally distributed; b. Calculated based on data. 

 

Table 3. Principal Component Loading Matrix of Low-, Mean-, and High-Flow in Yihe River Basin 

Indicators Low-Flow Period  Mean-Flow Period  High-Flow Period 

 PC1 PC2 PC3  PC1 PC2  PC1 PC2 PC3 

pH -0.803 0.179 0.164  0.894 0.060  0.939 -0.051 -0.006 

EC 0.849 0.304 -0.046  0.379 0.707  0.840 -0.084 0.238 

DO -0.458 -0.078 0.393  0.142 0.633  -0.123 -0.030 0.864 

Turbidity 0.048 0.262 0.836  0.320 -0.696  0.939 -0.070 -0.188 

COD 0.022 0.897 0.170  0.322 0.755  0.078 0.889 0.010 

NH4
+-N 0.731 0.045 0.099  0.857 0.235  -0.253 0.806 -0.123 

TP 0.163 0.608 -0.654  0.741 0.113  0.493 -0.122 0.563 

Eigenvalue 2.363 1.327 1.173  2.989 1.492  2.947 1.426 1.076 

Variance contribution rate (%) 30.569 19.644 19.266  35.042 28.970  40.137 20.989 16.710 

Accumulating contribution rate (%) 30.569 50.213 69.479  35.042 64.012  40.137 61.126 77.837 

with an area of 5.54 × 103 km2. The mountainous area accounts 

for 53.4%, the hilly area accounts for 35%, and plains and the 

river valley account for 11.6% (Ren, 2018). Therefore, the main 

landscape of the Yihe River Basin is the mountain landscape. 

Yihe River originates from Menton Ridge, Sanhe Village, Tao- 

wan Town, Luanchuan County, south of Xiong’er Mountain, 

and locates in Luoyang City, Henan Province, China. The river 

flows from the southwest to the northeast, and through Song 

Country, Yichuan country, and Luoyang City from the source, 

and finally injects into Luohe River in Yang Village, Yanshi 

Country. The length of the main river is 2.68 × 102 km, and the 

annual average run-off volume is 1.27 × 109 m3. Yihe River Ba- 

sin locates in a temperate continental monsoon climate zone, 

which have cold-dry winters and hot-humid summers. The an- 

nual average temperature varies from 12.4 °C (southwest) to 

15.2 °C (northeast) (Ren et al., 2017). The annual average pre- 

cipitation ranges 700 (northeast) to 900 mm (southwestern), 

approximately 50% of which is concentrated in July to Septem- 

ber. Rainstorms were often occurred during summer, which 

would trigger disasters such as floods and mudslides (Liu et al., 

2019). Cinnamon soil, brown soil, adamic earth and skeletal soil 

are the main soil types of Yihe River Basin. 

2.1. Water Quality and Climate Change Data 

Given the operability of sampling and the representative- 

ness of the output of sampling points in the sub-basin, the exits 

of these 17 sub-basins are exactly the planned sampling sites. 

A total of six times samples were taken from December 2016 

to August 2017 according to the hydrological regularity and the 

characteristics of multi-year precipitation in the Yihe River Ba- 

sin: Twice during the low-flow period (December 2016 to Jan- 

uary 2017), twice during the mean-flow period (April to May 

2017), and twice during high-flow period (July to August 2017). 

These samples were taken once a month. Following previous 

studies (GonzalesInca et al., 2015; Li et al., 2017; Zhang et al., 

2018) and the main landuse types, seven river water quality 

indicators were selected in the Yihe River Basin, including pH, 

EC, DO, turbidity, COD, NH4
+-N, and TP, Table 1 presents their 

specific statistical descriptions. Water samples at each sampling 

point in the sub-basin were collected in a pretreated polyethy- 

lene bottle and stored in a sampling box at 4 °C. The values of 

pH, EC and DO were measured on-site with the SX713 por- 

table measuring instrument (Runsun Instruments Inc., Chengdu, 

China). Turbidity was measured on-site using the portable GZ-
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20B turbidimeter (Fenglin Technology Inc., Shanghai, China). 

The location of the sampling point and the peripheral environ- 

ment were also recorded at the same time. The residual three 

indicators (i.e., COD, NH4
+-N and TP) were examined through 

the 5B-6 (C) triple-parameter measuring instrument (Lianhua 

Technology Inc., Beijing, China) as soon as possible after all 

water samples have been brought back to the laboratory within 

24 hours. 

 

(a) Cluster dendrogram based on hierarchical cluster analysis 

 
 

(b) Spatial distribution map of cluster groups in Yihe River Basin 

 
 

Figure 2. Cluster dendrogram of the sampling sites based on 

water quality indicators. 

 

From our previous studies (Liu et al., 2017), climate change 

had close direct or indirect associations with the investigated 

water quality. This study focused on analyzing the spatio-tem-

poral associations between river water quality and potential in-

fluencing factors of water pollution, such as climate changes 

(i.e., precipitation and temperature) in Yihe River Basin. To do 

this, the observed monthly precipitation and temperature data 

at four weather stations (i.e., Luanchuan Country, Song Country, 

Yichuan Country, and Yanshi city) from 1998 to 2017 were col-

lected in the Statistical Yearbook (Luoyang Statistical Yearbook). 

 

2.2. Multivariate Statistical Analysis Methods 

In this study, PCA, CA, DA and ANOVA were used to eval-

uate the spatiotemporal characteristics of water quality in Yihe 

River Basin. Multivariate statistical analysis requires that the 

pollution indicators have a normal or near-normal distribution 

(Sun et al., 2013; Mavukkandy et al., 2014). The single-sample 

Kolmogorov-Smirnov test method (Liu et al., 2003; Rigi et al., 

2019) was used to analyze the distribution characteristics of 

pollutant concentrations in the water samples. When α = 0.05 

and α = 0.01, the cutoff values of Kolmogorov-Smirnov (K-S) 

test statistic Z (Kolmogorov-Smirnov Z) were 1.36 and 1.63, 

respectively. When the bilateral asymptotic significance proba-

bility Sig < α, reject the null hypothesis, otherwise accept. 

The PCA performance well on the dimensionality reduc- 

tion of complex data. Several comprehensive factors that re- 

flect the majority of original data could be examined through 

linear transformation. It also has a significant ability in identi- 

fying the types and sources of major pollutants in different 

study periods (Vega et al., 1998; Simeonov et al., 2003). There 

are six key steps: normalizing the original data, constructing 

the correlation coefficient matrix, acquiring the eigenvalues 

and eigen-vectors, identifying the principal component contri- 

bution rate and cumulative contribution ratio, calculating the 

principal component load, and examining the score of each prin- 

cipal component (Ma et al., 2015). 

CA is an unsupervised pattern recognition technology, which 

can quantitatively determine the kinship relationship between 

a batch of samples without prior assumptions (Vega et al., 1998; 

Varol et al., 2012). Hierarchical cluster analysis (HCA) is one 

of the most general CA to classify water quality indicators into 

cluster groups according to their similarity or nearness (Igibah 

and Tanko, 2019). HCA has two forms, there are Q-type clus-

tering (i.e., classifying samples) and R-type clustering (i.e., clas-

sifying observed variables of the research object). In this study, 

Q-type clustering method was used to measure the distance be-

tween samples and generate the clustering tree diagram. The 

method is based on the squared Euclidean distance and the Ward 

algorithm (Strobl et al., 2008). 

DA can be used to distinguish cluster analysis results and 

determine primary pollution indicators. There are three main 

types: standard, forward and backward. Among them, the back- 

ward discriminant analysis method has a better ability to reduce 

the dimension and discriminate of the indicators. As a result, 

the backward discriminant analysis method was used to ana- 

lyze the spatial difference of water quality in the Yihe River Basin, 

and the cross-validation method was chosen to test its discrim-

inative ability. 

ANOVA is a very useful tool for analyzing datasets, which 

can be classified into two categories one-way and multiway 

ANOVA. The controlling factors of water quality changes in 

the Yihe River Basin are mainly time and space. A one-way anal-

ysis of variance can be performed. The significance test formula 

as follows: 

 

 

 

/ 1

/

SSA k
F

SSE n k





 (1) 

 
where k is the number of levels, n is the number of samples, SSA 

is the sum of squared spreads between groups, and SSE is the 
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sum of squared deviations within groups. The F statistic obeys 

the F distribution with degrees of freedom (k – 1, n – k). When 

the corresponding associated probability value is less than the 

significance level α (usually 0.05), the null hypothesis is reject-

ed, indicating that the population means have significant dif-

ferences at different levels of the control variable. Otherwise, 

there are no significant differences. The above analysis was done 

collaboratively using Microsoft Excel 2007 and SPSS 20.0.  

3. Results 

3.1. Evaluation of Water Quality 

Table 2 shows the result of the sample K-S test for each 

water quality indicator. Progressive significance values (both 

sides) for each indicator are greater than 0.05, indicating that 

overall river water quality indicators in 17 typical sub-basins 

over the Yihe River Basin conforms to the normal distribution. 

Thus, the monitored river water quality data can be used for 

multivariate statistical analysis. 

 

3.2. Temporal Variation Characteristics of River Water 

Quality in Yihe River Basin 

Temporal variation characteristics of seven river water qual-

ity indicators in 17 typical sub-basins were analyzed through the 

PCA (Table 3). KMO and Bartlett Spheroid tests showed that the 

principal component analysis was effective (df = 21, P < 0.01). 

The extracted principal components could reflect the basic 

situation of the original data (Liu et al., 2003; Simeonov et al., 

2003). Three principal components (PCs) were extracted dur- 

ing the low- and high-flow period, and two PCs were extracted 

during the mean-flow period according to the principle (i.e., eigen-

value is greater than 1). Based on previous studies (Liu et al., 

2003; Hussain et al., 2021), the absolute value of PCs that above 

0.70 in this study was used as a criterion for determining high-

load values (Table 3, Bold font). Then, the water quality varia-

tions during different water periods in the Yihe River Basin can 

be explained and discussed as follows. The absolute values of 

the PCs load of COD, NH4
+-N, EC and pH were greater than 

0.7 in the three periods (Table 3). It indicated that COD, NH4
+-

N, EC and pH were the most notable factors which affecting 

water quality throughout the study period in the Yihe River Basin. 

However, during low- and high-flow period, turbidity has a re-

latively higher PC load value. TP and DO have a strong correla-

tion with the PC load value during the mean- and high-flow pe-

riod, respectively.  

During the low-flow period, the PC1 explained 30.57% of 

the water quality variation, which was much larger than the 

contribution rates of the variance of PC2 (19.64%) and PC3 

(19.27%). EC and NH4
+-N showed a strong positive correlation 

(correlation coefficient > 0.7) with the PC1, while pH and DO 

have a negative correlation with the PC1. EC is a comprehen- 

sive indicator of the degree of ion activity in water and the eval- 

uation of ion quality (Zhang et al., 2012), which mainly reflects 

the impact of human activities and geological sediments in the 

water environment (Bellos and Sawidis, 2005; Yang et al., 2007; 

Xie et al., 2020). Generally, the value of pH in river water is 

weakly alkaline, which is mainly affected by external pollution 

sources and aquatic biological activities, and the pH can control 

the redox reaction of river water to a certain extent (Li et al., 

2017). The pH load value was negative, indicating that it was 

lower during the low-flow period. The content of DO is gener-

ally saturated in natural water, but it will decrease rapidly with 

the increase of biomass (Chang, 2005). When DO is less than 

2 mg·L-1, most fish cannot survive (Russo et al., 1981). The 

water quality indicator that strongly related to the PC2 was 

COD, while TP was generally weaker associated. COD char- 

acterizes the level of organic pollution in water bodies and is 

closely associated with wastewater discharge from urban, in- 

dustrial, and agricultural activities (Bellos and Sawidis, 2005; 

Li et al., 2017). TP related to the input of pesticides, industrial 

wastewater, and agricultural activities (Kannel et al., 2007). 

The high values of COD and TP in the water would reduce the 

DO concentration and induce the deterioration of surface water 

quality (Kannel et al., 2007; Zhang et al., 2012; Li et al., 2017). 

Fang et al. (2013) have emphasized that agricultural non-point 

source pollution was relatively small during the low-flow peri- 

od compared to point source pollution. Therefore, during the 

low-flow period, various pollutants that entered the Yihe River 

have formed the organic pollution, such as domestic sewage 

and industrial wastewater discharge. The decomposition pro- 

cess may consume a large amount of oxygen (the value of DO 

is negative, Table 3) and generate ammonia (higher NH4
+-N val-

ue, Table 3), organic acids and carbon dioxide. The hydrolysis 

of these acidic substances leaded to a decrease in pH, which 

was consistent with previous findings (Vega et al., 1998; Shrestha 

and Kazama, 2007). Consequently, the PC1 and PC2 can be clas-

sified as the combined effects of natural changes in the water 

environment and human activities (e.g., domestic and industrial 

wastewater discharge). Turbidity indicates the degree of resis-

tance of suspended matter and colloids in water (such as soil, 

silt, and plankton) to light transmission (Wu et al., 2018). Tur-

bidity has a strong positive correlation with PC3, which may 

be related to a large number of sand mining operations in the 

basin during the low-flow period. 

When it comes to the mean-flow period, the variance con- 

tribution rate of the PC1 was 35.04%, of which the larger factor 

loads were mainly occupied by pH, NH4
+-N and TP. River wa- 

ter quality at sub-basin scale was largely affected by the dual 

effects of natural processes and human activities (Oketola et al., 

2013; Zhang et al., 2018; Mir and Gani, 2019). For example, 

short-term surface runoff from rainfall will bring non-point 

source pollution and domestic sewage that generated through 

agricultural activities into rivers, causing nitrogen and phos- 

phorus pollution in the water body. Field investigations have 

found that spring cultivation in the Yihe River Basin was car- 

ried out from March to April every year. The chemical fertile-

izers (e.g., phosphorus and organic fertilizers) that were used 

in the cultivation of crops (e.g., peanuts, cotton, tobacco, and 

vegetables) would directly pollute rivers due to the erosion of 

rainfall and runoff. In addition, the denitrification of patho- 

genic microorganisms such as E. coli carried in organic fertile- 

izers (e.g., livestock and poultry manure) and bacteria pro- 

duced in the process of returning straw to the field also have 
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contributed to nitrogen and phosphorus pollution in water (Jia 

and Zhang, 2015; Li et al., 2018; Wang et al., 2020; Yao et al., 

2020). The variance contribution rate of PC2 is 28.97%, which 

is primarily related to EC and COD and can be classified as the 

common impact of natural and human activities. 

In terms of the high-flow period, pH, turbidity and EC 

were the main influence factors of the PC1. In the process of 

high-intensity rainfall during the high-flow period, a large number 

of terrestrial materials that produced by agricultural activities 

and soil erosion will migrate into the river water body with rain-

water and the surface runoff, polluting the surface water. Turbidity 

represents pollution that induced by rainfall events during the 

high-flow period, such as Erosion. The variance contribution 

rate of the PC1 was 40.14% (Table 3), which is much larger than 

the variance contribution rates of PC2 (0.99%) and PC3 (16.71%), 

indicating that the river water quality during the high-flow peri-

od was greatly affected by the combined effects of non-point 

source pollution and rainfall events. The load values of COD, 

NH4
+-N of the PC2 was increased obviously in the high-flow 

period than the other two periods. During the high-flow period, 

not only the precipitation increased significantly, but also the 

farmers applied large amounts of fertilizer to crops, especially 

corn. Nitrogen that cannot be effectively used by the plants would 

finally enter river with rainfall-runoff or groundwater infiltra-

tion, resulting in an increasing of nitrogen content in river water 

bodies. Besides, the NH4
+-N content that discharged into surface 

water was also much higher, which usually came from the manure 

of free ranges livestock and poultry in rural areas, domestic and 

industrial sewage. Thus, with the increase of water temperature 

in summer, bacteria and other microorganisms in the river will 

increase nitrification, reflecting the degree of nitrogen and organic 

pollution in water. The PC3 has a strong positive correlation 

with DO (Table 3). In addition, the average value of DO during 

the high-flow period was as low as 8.35 (Table 1). This might 

be due to the fact that the water body received large amounts 

of untreated domestic, industrial wastewater, and other sources 

of pollution, resulting in higher concentrations of pollutants in 

the water and higher microbial activity. These biological pro- 

cesses may further consume lots of oxygen in the water, such 

as the metabolic activities of microorganisms and the decay of 

aquatic organisms. 

Water quality indicators that have a significant impact on 

river water quality in one period may have reduced influence 

in another period. In general, the main water quality indicators 

of the three water periods in the Yihe River Basin reflect the 

dual influences of human activities and the natural environ- 

ment characteristics on water quality: the main polluted factors 

in the low-flow period were organic pollution and the varia- 

tions of natural environment, followed by nitrogen pollution. 

Nitrogen was the leading factor in river water pollution during 

the mean-flow period, followed by organic and phosphorus pol-

lution. Organic pollution and nitrogen were the main factors af-

fecting river water quality in the high-flow period. At the same 

time, comparing the statistical description of the water quality 

indicators of the Yihe River Basin during the three periods (i.e., 

low-, mean- and high-flow period) (Table 1), it can be found 

that: the average values of pH in the three water periods were 

slightly alkaline, and the change range during the entire study 

period from 6.13 to 8.9, which was basically within the range 

(6.5 ~ 9.0) which aquatic organisms can maintain their natural 

processes (Chang et al., 2012). The lowest value of pH (6.14) 

was appeared in the high-flow period, which might becaused 

by the decomposition of organic matter in wastewater discharge. 

Seasonal changes in pH did not show much difference. The max-

imum values of DO and COD were appeared in the low-flow pe-

riod, while these of EC, turbidity and NH4
+-N were distributed 

in the mean-flow period. The mean value of TP was higher in the 

low-flow and the mean-flow period relative to these in the high-

flow period, which is consistent with previous research (Li et al., 

2018). These might be due to the decreased of precipitation and 

runoff in these two periods, and the hydraulic erosion which af-

fected the concentration of TP in river water to a certain extent. 

 

3.3. Spatial Distribution Characteristics of River Water 

Quality in Yihe River Basin 

3.3.1. Spatial Cluster Analysis 

Based on the monitored water quality indicators of the Yi- 

he River Basin from 2016 to 2017, hierarchical cluster analysis 

was performed on the 17 typical sub-basins. After recalibrated 

the distance based on the cluster, the threshold 13 was selected 

to divide the sample points into three groups (Figure 2). The 

spatial similarity analysis of the sample points was operated to 

capture the spatial distribution characteristics of river water qual-

ity in the Yihe River Basin. The samples that included in each 

group were as follows: Cluster 1 (i.e., C1) {4, 16, and 17}; Clus-

ter 2 (i.e., C2) {9, 10, 11, 12, 13, 14, and 15}; Cluster 3 (i.e., 

C3) {1, 2, 3, 5, 6, 7, and 8}. 

According to the river network map, sub-basins division 

map, field investigation, and sampling in the Yihe River Basin, 

it can be inferred that the water quality of the same cluster group 

was affected by similar pollution sources and natural backgrounds, 

and thus has similar characteristics: in detail, samples 16 and 

17 included in C1 were mainly distributed in the lower plain 

rivers. The rivers in this group (C1) flow through agriculture 

area, are close to the urban area, and are more scattered in space 

than the other two groups. In recent years, with the reduction 

of cultivated land, the continuous increase of construction land 

(Ren et al., 2017), and the accumulation of pollution in the upper 

and middle reaches of rivers, the water quality in C1 has been 

seriously polluted by agriculture, industry, and domestic discharge. 

Affected by the domestic sewage and industrial wastewater of 

Luanchuan County and its tributaries, the water quality of sam-

ple 4 (C1) located in upstream was also poor. The C2 samples 

mainly flows through farmlands and towns in the middle reach- 

es of the Yihe river. Along with the increase in construction and 

forest land in C2, and the decrease of cultivated land and grass- 

land (Ren et al., 2017), the water quality in this region was af-

fected by both urbanization and agricultural activities. The sam-

ple points of C3 were belong to the upper reaches of the forest 

area and located at the southern foot of the Xiong’er Mountain. 

There was less human disturbance in this area, so the river was 

clean. The water quality of the above three groups (i.e., C1, C2, 

and C3) was all subject to human interference to varying degrees. 
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Table 4. Eigenvalues of the Spatial Discriminant Analysis 

Typical Discriminant Function Eigenvalues Variance (%) Accumulation (%) Canonical Correlation Coefficient 

1 22.817 93.4 93.4 0.979 

2 1.606 6.6 100.0 0.785 

 

Table 5. The Structure Matrix of the Characteristic Function of the Spatial Discriminant Analysis 

Water Quality Indicators 
Discriminant Function  

1 2 

TP 0.274* -0.172 

DO 0.134* -0.074 

NH4
+-N 0.123* -0.094 

COD (a) 0.061* 0.008 

EC 0.248 0.525* 

Turbidity 0.085 0.415* 

pH (a) 0.037 -0.085* 

Note: * represents the largest absolute correlation between a variable and a discriminant function; (a) indicates that the variable was not utilized in the analysis. 

 

Table 6. Wilks’ λ, Chi-Sqr, and Test of the Spatial Discriminant Analysis 

Function Test Wilks’ λ Chi-Sqr df Significant 

1 to 2 0.016 45.410 14 0.000 

2 0.384 10.535 6 0.104 

3.3.2. Discriminant Analysis 

To identify the water quality indicators that induced sig- 

nificant variations between groups, and to further verified the 

results of the above-mentioned spatial cluster analysis, the spa- 

tial characteristics of the three groups of water quality indica- 

tors were analyzed through DA (Tables 4, 5, and 6). The eigen-

values of the spatial discriminant analysis (Table 4) showed 

that the first discriminant function could explain almost all the 

variables (93.4%). TP, DO, NH4
+-N, and COD contribute higher 

to discriminant function 1 than other indicators (i.e., EC, turbidity 

and pH). However, EC, turbidity, and pH contributed higher for 

the discriminant function 2 (Table 5). The value of Wilks’ λ and 

chi-square coefficient were 0.016 ~ 0.384 and 10.535 ~ 45.41 

(Table 6), respectively. The significance test values (0.000) of 

two discriminant functions were both less than 0.01, indicating 

that the spatial clustering analysis was reliable; the Wilks’ λ 

significance test value of discriminant function 2 is 0.104 > 

0.05, which also showed the validity of discriminant functions 

of 1 and 2. 

Table 7 exhibited the verification matrix of the discrimi- 

nant analysis classification. The diagonal represented the num- 

ber and proportion of samples that were predicted correctly, 

while the remainder denoted the number and proportion of sam- 

ples which were incorrectly predicted. The overall accuracy of 

the grouping results of the clustering analysis was 94.1%, indi- 

cating that it was reasonable to explore the characteristics of the 

spatial variation of water quality based on the clustering groups. 

Table 8 showed the classification function coefficients of 

the linear discriminant function of Fisher. Based on Tables 4 

and 8, it can be inferred that the construction of the discriminant 

function involved five water quality indicators, including DO, 

EC, turbidity, NH4
+-N, and TP. These five water quality in- 

dicators not only implied that the discriminant function have a 

better ability to reduce the dimension of the indicators, but also 

showed that they have significant variations between there clu- 

ster groups (i.e., C1, C2, and C3). Therefore, the above five wa- 

ter quality indicators and discriminant functions could be used 

to characterize the spatial differences of water quality in the 

Yihe River Basin. The monitoring of such indicators needs to 

be strengthened in the future. 

 

Table 7. Validation Matrix of the Classification by Means of 

Discriminatory Analysis 

Primitive 

Group 

Forecast Group 

C1 C2 C3 

C1 3 (100%) 0 0 

C2 0 7 (100%) 0 

C3 0 1 (14.3%) 6 (85.7%) 

“C1” represents the sample points 4, 16, and 17; “C2” represents the sample 

points 9, 10, 11, 12, 13, 14, and 15; “C3” represents the sample points 1, 2, 

3, 5, 6, 7, and 8. 
 

Table 8. Classification Function Coefficients of DA 

 
Clustering Groups 

1 2 3 

DO 56.816 41.795 44.387 

EC 1.591 1.392 1.358 

Turbidity -7.758 -6.375 -6.782 

NH4
+_N 14.764 14.837 15.416 

TP 1552.138 260.377 471.095 

(Constant) -2265.599 -1723.768 -1690.270 

 

3.4. Spatiotemporal Variation Characteristics of Water 

Quality in Yihe River Basin 

The one-factor ANOVA analysis was performed for the 
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water quality indicators during three time periods (i.e., low-, 

mean-, and high-flow period) and different space scales (i.e., 

C1, C2, and C3). Figure 3 presented the average value of water 

quality during the three periods under the three clustering groups 

in the Yihe River Basin. It can be found that EC, DO, turbidity, 

NH4
+-N, and TP revealed significant spatial and temporal dif-

ferences, except for the two indicators of pH and COD (Figure 

3). This verified the results of discriminant analysis to some ex-

tent, which also further confirmed that there were significant 

differences among clusters.  

According to the variations of the water quality indicators 

during the three monitoring periods, it was interesting to find 

that: DO and NH4
+-N were significantly different in the high-

flow period, respectively; turbidity presented notable differ- 

ence in the mean-flow period; EC revealed an apparent differ- 

ence between the low-flow period and mean-flow period; TP 

showed significant differences in the three periods of low-, 

mean-, and high-flow. The averaged values of water quality in- 

dicators in most clusters (C1: EC, turbidity and TP; C2: DO 

and NH4
+-N, C3: turbidity, NH4

+-N and TP) showed a trend of 

mean-flow period > low-flow period > high-flow period; the 

averaged values of DO-C1, DO-C3, turbidity-C2, (NH4
+-N)- 

C1 and TP-C2 presented a trend of low-flow period > mean- 

flow period > high-flow period; the averaged value of EC-C3 

showed a trend in the low-flow period > high-flow period > 

mean-flow period; the averaged value of EC-C2 revealed a trend 

of high-flow period > mean-flow period > low-flow period. 

Among the seven monitoring river water indicators, the maxi-

mum averaged value of four indicators (i.e., EC, turbidity, NH4
+-N, 

and TP) were appeared in the mean-flow period; and these of 

two indicators (COD and DO) were distributed in the low-flow 

period; only the maximum value of the averaged pH was moni-

tored during the high-flow period. In general, river water pollu-

tion was the most serious during the meanflow period, followed 

by the low-flow period, and the water quality was best in the 

high-flow period.  

The variation of the mean values of the seven water quality 

indicators (i.e., pH, EC, DO, turbidity, COD, NH4
+-N and TP) 

during the same period in different spatial clusters (i.e., C1, C2 

and C3) indicated that the water quality of the Yihe River Basin 

displayed a gradual decline trend from upstream to downstream. 

Moreover, the water quality characteristics of the three cluster-

ing groups were closely related to their spatial location. The 

maximum averaged values of the EC, TP, DO and turbidity 

were occurred in C1, which flows through agriculture land and 

urban area in the lower reaches of the river basin. Besides, EC, 

TP in C1 showed significant differences with the other two groups. 

The averaged value of TP in C1 was higher than the other two 

groups, and the difference between C2 and C3 was not signifi-

cant. The DO and turbidity in C1 were significantly different 

from the other two groups in the high-flow and low-flow peri-

ods, respectively. The minimum value of the mean concentra-

tion of NH4
+-N was appeared in C2, which was significantly 

different from C1 in the high-flow period. The water quality in-

dicators (except TP) in the upper reaches of the forest area (C3) 

were lower than those of the other two groups, indicating that 

C3 was less subjected to human interference and the water quali-

ty was better. Therefore, the regions with relatively severe pol-

lution could be identified based on the average concentration 

of the above five water quality indicators and their spatial dif-

ferrence. For instance, the averaged values of EC, TP, DO and 

turbidity were much higher in C1, and they also have signifi-

cant differences with the water quality in the middle and upper 

reaches (C2, C3). The poor water quality in C1 may be induced 

by industrial pollution and agriculture non-point source pollu-

tion in the area, as well as the accumulation pollution from the 

middle and upper reaches (C2, C3). 

4. Discussion 

4.1. Temporal Variation Characteristics and Its Response 

to Climate Change 

Generally, river water quality was the worst in the low-

flow period and was better in the high-flow period (Yang et al., 

2007). However, the overall water quality of the Yihe River 

Basin was the worst in the mean-flow period, followed by the 

low-flow period, while it was the best in the high-flow period. 

The river water quality may be significantly affected when the 

peripheral land-use type changed from natural to urban land 

(Tu and Xia, 2006; Shen et al., 2011; Putro et al., 2016). The 

construction of the highway from Luanchuan Country to Lushi 

Country highway in the upstream reaches was started during 

the low-flow period (Henan Government, 2017), and the land-

use changes caused by which might be one of the main influ- 

encing factors of the poor water quality during this period. 

Luanchuan County is a mountainous landform, the roads, farm- 

land, and residential areas of which were mainly distributed 

along the river valley. The development of the highway con- 

struction project has promoted the conversion of land-use types 

such as cultivated land and residential areas along with the riv- 

er reserves to roads. This process would not only cause soil ero- 

sion but also directly affect the water quality of the adjacent river. 

The bare soil produced by this project would be washed into 

the river water body through surface runoff. Besides, the high-

way in this area mainly constructed in the form of high sub-

grades. Construction waste (e.g., waste slag, magma, and silt), 

road runoff, and flying dust that generated in the process of sub- 

grades filling would easily enter the river. Thus, the turbidity 

of the river water was apparently increased, and finally induce 

the reduction of the quality in river water. At the same time, the 

aquatic ecological control project was carried out in the Song 

Country urban area and the Yichuan Country in the middle reach-

es during the mean-flow period. The project promoted the input 

of pollutants into the Yihe River, which made the concentration 

values of turbidity, NH4
+-N and TP of C3 and C1 were much 

higher during the mean-flow period than those in low- and 

high-flow period and affected the river water quality. 

During the low-flow period, the water quality of the Yihe 

River Basin was also relatively poor. Previously, precipitation 

was widely regarded as one of the most powerful meteorologi- 

cal inputs in hydrological and water quality (Sajjad et al., 2018; 

Solakian et al., 2019). Figure 4 shows the averaged values of 

the monthly precipitation and temperature at four weather sta- 

tions (i.e., Luanchuan Country, Song Conntry, Yichuan Country  
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Figure 3. Spatial variations of discriminant indicators from spatial DA. Different letters (i.e., a, b, and c) of each water quality 

indicator in the same period represent significant differences among groups, P < 0.05. 

 

and Yanshi city) from 1998 to 2017. The results showed that 

during the low-flow period (i.e., December and January), the 

upper reaches (i.e., Luanchuan Country) only received 15.9 mm 

precipitation, much less than that in other regions. The river flow 

would also decrease owning to the decrease in precipitation dur-

ing the low-flow period. Moreover, some river tributaries of the 

upper reaches (C3) were restricted by the mountainous terrain, 

and rivers were small and narrow, which increases the difficulty 

of pollutants the diffusing in the river water. The lowest values 

of temperature were presented in the low-flow period, ranging 

from –0.17 to 2.98 °C (Figure 4). The temperature of the river 

water was also relatively low during this period, which affects 

the metabolism rate of the microorganisms that decompose pol-

lutants. Thus, a large amount of pollution load would stay in the 

river water, resulting in pollution enrichment. In addition, dur-

ing the investigation, we also noted that the domestic sewerage 

was not fully integrated into the sewerage treatment system in 

the upper reaches of the Yihe River Basin. Therefore, the direct 

discharge of domestic sewage was another major fac-tor of se-

vere pollution during the low-flow period in the area. Finally, 

in the low-flow period, active sand mining activities were also 

one of the causes of river water pollution. Most of the precipita-

tion in the Yihe River Basin was concentrated in summer and 

has a higher river runoff. Thus, pollutants (e.g., NH4
+-N and TP) 

were diluted, and resulting in lower values of water quality moni-

tored indicators during the high-flow period. 
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4.2. Spatial Variation Characteristics of Water Quality 

and Potential Pollute Source 

The gradient of urbanization is increasing from the upstream 

to the downstream in the Yihe River Basin. Land-use variations 

and land management methods that caused by human activities 

and urbanization development have significant effects on water 

quality changes (Varol et al., 2012; Wu et al., 2018). The water 

quality of the middle and upstream reaches of the Yihe river 

was superior to that of downstream reaches. Forest land has a 

pretty good weakening effect on water quality deterioration, 

and the roots and litter of vegetation have a strong retention and 

absorption effect of pollutants (Ji et al., 2015). Most of the main-

stream (C2) belongs to hilly landforms. More than half of the 

rivers, canals and reservoirs in the study area were distributed 

on C2. Due to their strong capacity to purify pollutants, most 

of the water quality indicators monitored at C2 showed smaller 

averaged concentration values during the low- and high-flow 

periods. The lower reaches of the Yihe river flows through Yi-

chuan Country and Yanshi Country (C1), its urbanization level 

was relatively higher than the middle and upper reaches. There-

fore, in addition to the increase in point source pollution lead-

ing to the deterioration of river water quality, an increase in the 

proportion of impervious surfaces in the sub-basins would also 

endanger aquatic ecosystems and river water quality, which was 

consistent with previous study (Paul and Meyer, 2001). In urban 

areas, short-term heavy rainfall can promote contaminates matters 

to enter rivers through impervious surfaces. The underground 

drainage system in the city would further increase the peak 

flood flow and shorten the time for pollutants to enter the river. 

Besides, the accumulation of upstream pollutants leads to the 

deterioration of the water quality of downstream rivers after 

passing through the city. These reflect the impact of human so-

cioeconomic activities and natural processes (e.g., precipitation) 

on river water quality. Therefore, in addition to the high pollu-

tion load of TP and NH4
+-N in the water body due to the con-

struction of the high-way in the upper reaches of the Yihe river 

during the mean-flow period, the water quality in the upper reaches 

(C3) and the midstream (e.g., Luhun Reservoir in C2) of the 

Yihe River Basin was better than the lower reaches (C1) during 

the low-flow and high-flow period (Figures 2b and 3).  

Consequently, the temporal and spatial changes in water 

quality in the Yihe River Basin were affected by both human 

activities and natural factors. In addition to the effects of the 

construction of the high-way, the aquatic ecological control pro- 

ject, and cultivation, the temporal variation in water quality was 

also affected by climate change (e.g., precipitation and tempe- 

rature), the variation in space was also restricted by natural en- 

vironment characteristics such as topography. 

 

4.3. Representations of Spatial-Temporal Changes of the 

River Water Quality 

In terms of the representation of spatiotemporal changes 

in water quality in a river basin, the quantity and quality of 

monitoring water data in space were mostly presented through 

the discrete graphics (e.g., histogram, scatter diagram, and line 

chart) (Ravindra et al., 2003; Sundaray et al., 2006; Sun et al., 

2013; Wu et al., 2018). However, methods such as spatial inter- 

polation were rarely used to draw contour maps on a two-di-

mensional plane to simulate the spatial difference in water qual-

ity (Wang et al., 2013). And little or no studies have used three-

dimensional (i.e., 3D) surface maps to describe the quantity, 

quality, density, and correlation of river water quality data at 

different sampling points. Rivers are 3D geographical things 

(Liu et al., 2019). Three-dimensional simulation of the spatial 

characteristics of river water quality data at different sampling 

points will be more visual, intuitive and more in line with peo- 

ple’s habits of daily observation. The 3D kernel density surface 

graph can appropriately exaggerate the difference between the 

high and low values and can effectively highlight the differences 

between hot spots and regions, thereby making the display of 

thematic information more intuitive and diverse (Lu et al., 2017). 

In the future, related theories and techniques that expressed in 

three-dimensional such as kernel density estimation are desired 

to be explored and applied to the spatial mapping of river water 

quality. These are expected to provide more intoitive and scientific 

tools for river water environmental protection and water quality 

improvement. 

 

 
 

Figure 4. The monthly average precipitation (i.e., P) and tem-

perature (i.e., T) of four weather stations (i.e., Luanchuan Country, 

Song Conntry, Yichuan Country, and Yanshi city) in Yihe 

River Basin from 1998 to 2017. 

5. Conclusions 

In this study, the spatiotemporal characteristics of river 

water quality were analyzed in 17 sub-basins in Yihe River Basin 

during low-, mean- and high-flow period based on the multi-

variate analysis methods. The potential pollution sources and 

contaminated areas were also identified according to the socio-

economic activities, meteorological data and the field investi- 

gations data in the Yihe River Basin in China. The results showed 

that: (1) PCA shows that the water quality in the Yihe River Basin 

was dominated by organic pollution during the low-flow period, 

followed by nitrogen pollution; nitrogen pollution was the influ-

ential indicators during mean-flow period, followed by phos-

phorus and organic pollution; nitrogen and organic was the main 

pollution during the high-flow period, respectively. (2) CA di-

vides the sampling points of the Yihe River Basin from upstream 

to downstream into three categories (i.e., C1, C2 and C3). The 

results of DA verified that the accuracy of the CA was 94.1%. 

It also showed good dimensionality reduction ability, that is, 
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only five key water quality indicators (i.e., DO, EC, turbidity, 

TP and NH4
+-N) could reasonably reflect the water quality sta-

tus in the Yihe River Basin. This can lessen the cost and number 

of recurring sampling indicators to optimize the sampling strategy. 

(3) Water pollution was most severe in the mean-flow period, 

followed by the low-flow period, and water quality in the high-

flow period was the best. The water quality shows a declining 

trend from upstream to downstream, and the water pollution lo-

cated downstream (C1) was relatively severe. (4) The spatial 

and temporal variations of water quality were affected by human 

activities (e.g., the construction of the high-way, the aquatic 

ecological control project and cultivation), natural processes 

(e.g., precipitation and temperature) and natural environment 

characteristics (e.g., topography). Besides, related techniques 

of three-dimensional expressions such as nuclear density es-

timation can be used for the spatial mapping of river water qual-

ity in the future. 
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