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ABSTRACT. The current research discusses the applications of Bayesian linear regression to predict the uncertainty of remote sensing 

data. To predict the uncertainty, the study considered the SENTINEL-2 satellite data of agricultural fields of Uttar Pradesh state of India. 

Using the stratified sampling method in Google Earth Engine, the random points generated are mapped to agricultural fields. Data was 

collected in the form of maximum Normalized Difference Vegetation Index (NDVI) values of each agricultural field. The dynamics of 

the time series predictions were explored with Bayesian linear regression, a probabilistic deep learning method. The model uncertainty 

defined as epistemic uncertainty is evaluated with the prior and posterior probability parameters of Bayesian statistics in linear regression. 

The number of regression lines predicted for the same data shows evidence of uncertainty. The Bayesian linear regression models show 

evidence of high uncertainty for the predicted NDVI values. The variation in model uncertainty is measured by dividing the dataset into 

samples and it is observed that with increase in data the uncertainty is reduced. Also, with the increase in data, the posterior density 

becomes sharper which corresponds to a decrease in variance. Further, the study extended the concept of regression analysis with 

Gaussian basis functions to determine the effect of model uncertainty with an increase in data. The analysis has shown the same result 

in knowing the effect of uncertainty with the increase in data. Further, a nonlinear polynomial regression model with a Gaussian 

distribution as a basis function was developed to evaluate the marginal probabilities of the evidence function in capturing the uncertainty 

with varying degrees of freedom. The polynomial regression with a Gaussian distribution using Bayesian statistics has captured the 

uncertainty and confirmed that the uncertainty is captured at lower degrees of freedom. 
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1. Introduction 

The fundamental goal of remote sensing is to capture infor- 

mation about objects from remote locations. The information 

generated is not accurate, and there is an element of uncertainty 

associated with the results obtained from remote sensing tech- 

niques. The problem of uncertainty is central in remote sensing 

and has got relatively modest attention. Uncertainties may arise 

during acquisition, pre-processing, and from all possible sources 

from which imperfections could originate. Different degrees 

of uncertainty arise due to the complexity of the earth’s sur- 

face, errors in the calibration, the limitations of the radiometric 

resolution of a sensor, and during processing of remote sensing 

imagery. Due to uncertainty, when the image is classified, it 

leads to confusion among pixels belonging to different cate- 

gories in the image. 

The two sources of uncertainty in remote sensing data are 

spatial distribution uncertainty and semantic uncertainty. The spa- 

tial distribution uncertainty arises from the differences in the 

spatial distribution of different pixels and mostly due to mixed  
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pixels (mixels) in an image. The degree of classification un- 

certainty is high in mixels and further the uncertainty in the 

spatial distribution is affected by boundary pixels. Semantic 

uncertainty in remote sensing data is due to intra-class variabil- 

ity among the pixels. Similar pixels in the image will have the 

same spectral and spatial features, but spectral features will dif- 

fer within the image due to noise. Gillmannet et al. (2018) showed 

that as the spatial resolution increases, the intra-class variability 

among pixels also increases, thus causing difficulty in image 

classification and leading to more uncertainty. Objects with di- 

verse internal heterogeneity and higher heterogeneity in the remote 

sensing image are more likely to be misclassified. These differ- 

ences will increase the semantic uncertainty between pixels in 

the image. The quantitative uncertainty description of the image 

is obtained with object-oriented segmentation performed on rel- 

atively homogeneous objects, while the classification uncertainty 

is measured based on the segmentation results. 

The two sources of uncertainty of a deep learning model 

measured are data uncertainty and model uncertainty. Estimating 

model uncertainty is more difficult as compared to data uncer- 

tainty as it measures uncertainty because of maximum likelihood 

training on data. Data uncertainty will arise due to noise in the 

data. Gal and Kendall (2017) demonstrated that aleatoric and 

epistemic uncertainty are the two main sources of model uncer- 

tainty. Aleatoric uncertainty is an inherent property of the data 
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distribution, and it is irreducible. Epistemic uncertainty about a 

deep learning model built with limited data arises due to inad- 

equate knowledge about the system. For data-rich problems, 

AI-based methods are used to build efficient models, but these 

data-rich problems are noisy, incongruous, and multimodal. 

Gal and Kendall (2017) showed that predictive models without 

uncertainty quantification are inaccurate, and deep learning mod- 

els incorporating uncetainty quantification are described as well-

suited predictive models for the decision-making process. 

The uncertainty that needs to be quantified arises from situ- 

ations like the collection and accuracy of training data, building 

the deep learning model with limitations, and checking the per- 

formance of the model based on operational data. Deep learn- 

ing architectures and uncertainty quantification are used to build 

predictive models. These models face at least four groups of 

problems that overlap: the lack of a theory, the lack of causal 

models, the sensitivity to imperfect data, and the cost of com- 

puting. 

2. Modelling Uncertainty Quantification Using 

Bayesian Techniques 

Deep learning methods are successful in solving real-world 

problems, but researchers do not trust the accuracy and reliability 

of their predictions. To resolve these issues, Bayesian Deep Learn- 

ing (BDL) and Bayesian Neural Networks (BNN) are introduced 

as a bridge between deep learning models and Bayesian statistics. 

These methods can handle problems with overfitting and are 

taught to understand how the model parameters work. 

 

2.1. Monte Carlo (MC) Dropout 

With the Monte Carlo method, the posterior inference can 

be computed exactly in deep learning models. But this method 

is slow and computationally expensive when integrated with 

deep learning architectures. To compute the prediction uncer- 

tainty, the MC method was integrated with dropout as a regu- 

larisation term. It is observed that the MC dropout has solved 

the overfitting problem in deep learning models. Several authors 

have used dropout to estimate the uncertainty quantity. Wang 

et al. (2019) have solved medical image segmentation problems 

using deep convolutional neural networks (CNN) to estimate 

epistemic and aleatoric uncertainty. They have applied the MC 

sampling technique to estimate the probability density function 

of the output segmentation. Liu et al. (2019) have proposed a 

new unified model for CNN using the stochastic gradient descent 

method to estimate epistemic and aleatoric uncertainty. Towards 

this, they used the Bernoulli distribution at the hidden and out- 

put layers of neurons with MC dropout. Nair et al. (2019) created 

a three-dimensional CNN that can segment organ classification 

problems from MRI sequences and estimate four types of uncer- 

tainty. Amini et al. (2018) have computed model uncertainty in 

BNN with two dropout methods, i.e., Bernoulli dropout and 

spatial Bernoulli dropout, for end-to-end autonomous vehicle 

control experiments. Mcclure et al. (2016) used Gaussian dropout 

to sample the weights and to estimate the uncertainty accurately 

instead of sampling the weights directly. Using Gaussian dropout 

and Bernoulli dropout, they have improved the accuracy of CNN 

architectures and proposed a novel model called the spike-and-

slab sample normalization Teye et al. (2018) combined the MC 

method and Batch normalization process using Bayesian statis- 

tics to estimate model uncertainty of the U-Net CNN deep learn- 

ing model to segment myocardial arterial spin labeling tissues. 

Yu et al. (2019) developed a semi-supervised learning model to 

estimate the model normalization with batch normalization in the 

MC process of segmenting the left atrium from 3D MRI images. 

 

2.2. Comparison of Uncertainty Quantification Methods 

Several authors have conducted studies to compare different 

uncertainty quantification (UQ) models. Foong et al. (2019) es- 

timated the epistemic uncertainty using shallow BNN. They 

have compared MC dropout and mean-field Gaussian Varia- 

tional Inference to estimate the epistemic uncertainty. Siddhant 

et al. (2018) designed various deep learning models using ANN 

and CNN and applied the MC dropout to estimate and compare 

the model uncertainty among the various models. Hubschneider 

et al. (2019) used MC dropout and the bootstrapping ensemble 

technique to estimate and compare model uncertainty in the task 

of vehicle control. Mukhoti et al. (2018) designed several deep-

learning models and estimated model uncertainty using MC 

dropout in regression problems. 

 

2.3. Variational Inference 

Variational Inference (VI) is an approximation method 

built with prior and posterior distribution parameters over BNN 

weights to estimate the model uncertainty. To model uncertainty, 

Bayesian inference is viewed as an optimization problem that 

can be used to train deep neural networks (DNN) using the 

stochastic gradient descent method (SGD). Posch et al. (2019) 

estimated the posterior distribution uncertainty of the DNN us- 

ing the product of probability density parameters of Gaussian 

distributions with eigenvalues of covariance matrices. Krishnan 

et al. (2019) used deterministic weights from a pre-trained DNN 

to estimate the model uncertainty with a transfer learning mech- 

anism. Subedar et al. (2019) addressed epistemic uncertainty 

using a multimodal Bayesian fusion framework for human ac- 

tivity recognition. Marino et al. (2018) estimated model uncer- 

tainty for deep BNN using the SGD method. Louizoset et al. 

(2017) estimated the model uncertainty with posterior distribu- 

tions over the weights of neural networks using the SGD vari- 

ational inference method. Hubin and Storvik (2019) proposed 

the SGD to estimate model uncertainty through stochastic vari- 

ational inference. Liu et al. (2020) estimated the probability pre- 

diction of uncertainty by integrating variational inference in 

spatial-temporal neural networks. Ryu et al. (2019) estimated 

model uncertainty by integrating a graph CNN with the BNN 

framework. Swiatkowski et al. (2020) improved the signal-to-

noise ratio by decomposing the variational parameters into low-

rank factorization with Gaussian mean-field variational infer- 

ence and the SGD method. Farquhar et al. (2020) proposed a 

deeper linear mean-field network for a shallow full covariance 

network to estimate model uncertainty. 
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2.4. Model Uncertainty in Remote Sensing 

In the field of remote sensing, most of the work related 

to data and model uncertainty is done with the semantic seg- 

mentation of RADARSAT SAR images. Rottmann et al. (2019) 

Deep Lab model with MC dropout used Cityscape data to esti- 

mate the model uncertainty and obtained an accuracy of 95.3% 

and Intersection over Union (IoU) of 78%. They have devel- 

oped uncertainty graphs for predictive entropy and mutual in- 

formation to predict pixel uncertainty. Kendall et al. (2015) ap- 

plied MC dropout in the SegNetCNN architecture on CamVid 

Road Scenes and SUN RGB-D Indoor Scene datasets. They 

compared different neural network architectures to the SegNet 

architecture and made aleatoric and epistemic uncertainty maps 

for all classes and for each class using K-fold cross-validation 

mechanisms. Huang et al. (2018) proposed a method of “con- 

crete dropout” by modifying the traditional “MC dropout” to im- 

prove the accuracy of SegNet architecture. LaBonte et al. (2019) 

compared MC dropout to the BDL Model by sampling weights 

from the posterior distribution. The BDL model learns the prior 

and posterior parameters of the distribution instead of the 

weights, and it is observed that the model produces better ac- 

curacy after training the data for several times. The Bayesian 

parameters have produced interpretable uncertainty maps to 

compare the differences in uncertainty. CNN architectures for 

high-resolution image semantic segmentation were proposed 

by Kampffmeye et al. (2016). They have removed uncertain 

pixels from prediction, and uncertainty maps are designed us- 

ing MC dropout. They showed improvement in accuracy from 

90 to 97.5%. Haas and Rabus (2021) have applied deep learn- 

ing techniques to RADARSAT SAR images for semi-automated 

road segmentation. The deep learning framework developed 

with MC dropout is used to develop uncertainty maps and for 

the classification process to improve accuracy. 

With this background, it is observed that there is a need to 

explore the model uncertainty for time series data in remote 

sensing images. To explore model uncertainty, a time series pre- 

diction model was developed for SENTINEL-2 NDVI (Nor- 

malized Difference Vegetation Index) using Bayesian Linear 

Regression and estimated the model uncertainty with Bayesian 

Parameters as mentioned above. 

 

2.5. Normalized Difference Vegetation Index (NDVI) 

Researchers and scientists use the NDVI as a standard tool 

to assess vegetation cover, plant growth, crop phenology, and 

biomass production using multispectral satellite data. Over the 

past few years, many NDVI products have been made from dif- 

ferent sensors data. These products can be used for quantitative 

and qualitative analysis of time series predictions. The NDVI 

describes the health and greenness of different vegetation con- 

ditions considering the difference between near-infrared (which 

vegetation strongly reflects) and red light (which vegetation ab- 

sorbs). The NDVI vary from –1 to 1. In satellite data, objects 

like cloud, shadows are represented with more than the value 1, 

water bodies as –1, and 0 for no vegetation cover. The NDVI 

values between 0.8 and 0.9 indicate greater densities of green 

leaves while the values from 0.2 to 0.5 for shrubs and grass- 

lands or senescing crops. Healthy vegetation has a high chloro- 

phyll content, reflecting more in near-infrared (NIR) and green 

light whereas unhealthy vegetation reflects less NIR. Similarly, 

when the plant reaches a greener stage, it will have a higher re- 

flectance of NIR than when it is growing in different stages, 

providing distinct signal values to identify the growth cycle of 

a plant. The NDVI is given as: 

 

NIR R
NDVI

NIR R

−
=

+
 (1) 

 

where NIR stands for near-infrared, and R stands for red light 

from the visible spectrum. 

3. Data and Methodology 

Uttar Pradesh is the largest state in the Indo-Gangetic 

Plain, producing wheat and rice every year. To explore the time 

series prediction dynamics using Bayesian linear regression, the 

study considered the SENTINEL-2 product of the whole Uttar 

Pradesh state, India. The SENTINEL-2 images are collected 

and pre-processed with less than 5% cloud cover using the Goo- 

gle Earth Engine, for the period from January 1 to December 

31, 2021. The NDVI was derived from the red (Band 4) and 

near-infrared (Band 8) spectral bands with spatial resolutions 

of 10 m of SENTINEL-2 datasets. The study generated 100 

random points, imposing the criteria that they should be over 

farmland growing a certain crop. To achieve this, the study 

used GFSAD1000 (Cropland Extent 1 km, Crop Dominance, 

Global Food-Support Analysis Data) from the Google Earth 

Engine (GEE) CatLog to select the pixels that are farmland 

growing wheat and rice. The stratified sample method in GEE 

CatLog allows mapping the random points on the pixels, which 

are agricultural fields. The agricultural fields mapped are 

shown in Figure 1. The study used a maximum NDVI value for 

each crop collected from 100 agricultural fields and evaluated 

for uncertainty. The study considered the entire 2021 dataset to 

build the deep learning model for time series prediction. The 

distribution of NDVI values is shown in Figure 2. 

Bayesian Linear Regression: Linear regression models 

are linear with explicit parameters but not with their input vari- 

ables. Linear models can model non-linearity from input vari- 

ables to targets like in polynomial regression. In general, a lin- 

ear regression can be written as:  

 

( ) ( ), Ty x w w x=  (2) 

 

The target variable t of an observation x is provided with 

a deterministic function y(x, w) and random noise ε: 

 

( ),t y x w = +  (3) 

 

The study assumed that the noise is normally distributed 

with zero mean and variance one, and the corresponding prob- 

abilistic model is: 
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Figure 1. Location of the agricultural fields selected for the study. 

 

 
 

Figure 2. Maximum NDVI of 100 agricultural fields for year 2021. 
 

( ) ( ) 1

1, , ,N i

T

t
p t X w N x

w
   − 

=  
 

        (4) 

 

To fit the model and for inference of model parameters, 

training set of N independent and identical observations x1, 

x2, …, xN and their corresponding targets t1, t2, …, tN. The sum 

of squares error function derived from the exponent of the like- 

lihood function is: 

 

( ) ( )( )
1

1

2

N T

D i iE w t W x= −          (5) 

 

where (xi) is the design matrix. 

To define the Bayesian linear regression, there is a need 

for prior probability distribution over model parameters w. The 

probability distribution is a Gaussian distribution over model 

parameters w with zero means:  

1,
w w

p N I
o




−   
=   

   
          (6) 

 

The posterior distribution built with the log-likelihood prior 

probabilities is given as: 

 

( )log , , D

w
p E w constant

t
  

 
= − + 

 
       (7) 

 

where ( )
1

2

T

DE w w w= . 

The parameters α and β are obtained by maximizing the 

integral of likelihood: 

 

, ,
t t w

w p p dw
w

 
 

     
 =     
     

          (8) 
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Maximizing the above equation will result in marginal 

likelihood concerning the parameters α and β. The mean and 

standard deviation of these distributions are used to calculate 

epistemic uncertainty. 

Once the data was obtained, the prior and posterior proba- 

bilities of the samples were evaluated. The distribution defined 

is the Gaussian distribution and is distributed over the model 

parameters as described in Section 3.2. Bayesian linear regres- 

sion is defined with the model parameters, and the probability 

of the predictions is shown in Figure 3. As the noise is removed, 

we are interested in model uncertainty. The model uncertainty, 

i.e., epistemic uncertainty defined in terms of mean and standard 

deviation, will lie in that range. The model uncertainty evaluated 

is shown in Figure 3. 

 

 
 

Figure 3. Epistemic uncertainty of NDVI data. 

4. Results and Discussion 

4.1. Machine Learning Approaches in Modeling 

Uncertainty 

The spatiotemporal process became a strong candidate for 

many machine learning methods because of its complex inter- 

actions and high dimensionality. While there is numerous ma- 

chine learning and deep learning models for nonlinear spatiotem- 

poral processes, the explicit dynamics of these processes remain 

unexplored. Though feed-forward neural networks model the 

multi-variate processes, they are not designed to capture dynamic 

time-sequential interactions between the variables. Several re- 

searchers tried to explore the dynamics of the spatiotemporal 

process, but Recurrent Neural Networks (RNN) proved to be a 

potential model to explore the nonlinear dynamics in multivari- 

ate sequential systems. However, RNN suffered from a “vanishing 

gradient” problem and made these models difficult to estimate 

the backpropagation parameters in the spatiotemporal process. 

But RNNs have been increasingly used to model complicated 

forecasting problems such as visual object tracking, speech recog- 

nition, and text generation. RNN replicates complex attractor dy- 

namics in chaotic systems and is considered a black box method 

for capturing complex sequential relationships between the var- 

iables for modeling dynamic problems. RNNs are referred to 

as echostate networks which randomly simulate the parameters 

of the hidden state of backpropagation, thereby reducing it to a 

regression problem. 

Deep learning tools like ANN, and CNN dropout represent- 

ing model uncertainty is of crucial importance to address the 

issue. With the introduction of Bayesian uncertainty, new deep-

learning models have evolved. Standard deep learning regres- 

sion and classification models do not capture epistemic uncertainty. 

In classification and regression models the predictive probabili- 

ties with SoftMax output are represented as model confidence 

and they are uncertain in nature. An agent in reinforcement learn- 

ing can decide when to exploit and when to explore uncertain 

information. An agent in reinforcement learning will learn much 

faster with uncertainty estimates over Q-valued functions and 

techniques like Thomson sampling. 

Bayesian probability theory is a mathematical approach to 

model uncertainty but is computationally expensive as compared 

to other mathematical models. To avoid this computational cost 

dropout and its variants are considered as Bayesian approxima- 

tion and designed as a probabilistic model. This dropout approx- 

imation “integrates over the models” weights as a Gaussian pro- 

cess. Finite Neural Networks with Gaussian distributions over 

the weights have been studied as BNN to model uncertainty in 

DNN architectures. Another method to model the uncertainty is 

“variational inference” in BNN but with limited success which 

offers robustness in overfitting. Recent advances in variational 

inference are “sampling-based variational inference” and “stochas- 

tic variational inference” to model the uncertainty, but these 

models come with a prohibitive computational cost. As compared 

to the dropout technique, variational inference requires more 

parameters (double the size) for the same network size and more 

time to converge to the Gaussian process. To overcome the dif- 

ficulty, “expectation propagation” in hidden layers is introduced 

to reduce the Root Mean Square Error (RMSE). 

 

4.2. Observations from the Current Study 

In Figure 3 the x-axis represents NDVI values, and the cor- 

responding regression values are represented on the y-axis. 

From Figure 3, it is observed that for the same data, the Bayesian 

linear regression model shows a greater number of regression 

lines, which signifies that the epistemic uncertainty is high for 

the model built on this data. The shaded region is the epistemic 

uncertainty, and it shows that the error lies in that region for 

each point predicted with Bayesian statistics. Further, to know 

the variations in uncertainty, the dataset is divided into three 

subsets of sizes 20, 50, and 70. The data is normalised with a 

normal distribution in the range [–1, 1]. This process is done to 

show that as the data size increases, epistemic uncertainty is 

reduced. The results are shown in Figures 4 to 6. 

Figures 4 to 6 show the number of regression lines (red 

colour) for the random weight samples drawn from the posterior 

distribution. The true parameters of the regression line are plot-  
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Figure 4. Epistemic uncertainty with 20 samples. 
 

 
 

Figure 5. Epistemic uncertainty with 50 samples. 
 

 
 

Figure 6. Epistemic uncertainty with 70 samples. 
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ted as a dashed black line, and the training data with Gaussian 

noise embedded is plotted as black dots. Figure 4 shows that as 

the number of data points goes up, the peak of the posterior 

density gets sharper. This is the same as the variance of random 

samples going down in the second column and the epistemic un- 

certainty going down in the third column. 

 

 
 

Figure 7. Epistemic uncertainty with 20 samples using 

Gaussian basis functions. 

 

 
 

Figure 8. Epistemic uncertainty with 50 samples using 

Gaussian basis functions. 

 
 

Figure 9. Epistemic uncertainty with 70 samples using 

Gaussian basis functions. 

 

Further, the study extended the concept of Bayesian regres- 

sion analysis with Gaussian basis functions of mean 0 and vari- 

ance 1. From Figures 7 to 9, it is observed that the posterior vari- 

ance and the prediction uncertainty of the samples drawn de- 

crease with an increase in data, and it shows that the epistemic 

uncertainty is high with fewer samples. 

Moreover, a nonlinear regression model (polynomial regres- 

sion) is built with varying degrees of freedom to capture the 

epistemic uncertainty. For evidence function, we have chosen 

ten polynomial basis functions of varying degrees. The poly- 

nomial regression with Gaussian distribution using Bayesian 

statistics defined with marginal probabilities of the evidence 

function is shown in Figure 10. It is observed that the poly- 

nomial regression with degree 4 only has captured the epis- 

temic uncertainty and there is no difference with the polynomi- 

als of the highest degree in comparison. The polynomial regres- 

sion model with higher degrees of freedom is not needed to 

capture the uncertainty as data is sufficiently embedded in the 

shaded region of regression model with degree 4 and confirms 

that marginal likelihood evaluation favours models of interme- 

diate complexity. 

5. Conclusions 

In this work, we have assessed the epistemic uncertainty 

of the remote sensing data with probabilistic deep learning 

techniques. The study considered the Bayesian Linear Regres- 

sion technique as a probabilistic deep learning model to esti- 

mate the model uncertainty. To make the analysis of the deep 

learning model built with remote sensing data, we have con- 

sidered GFSAD1000 and SENTINEL-2 NDVI time series data 

of wheat and rice agricultural fields of Uttar Pradesh state in 
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Figure 10. Polynomial regression with varying degrees of freedom. 
 

India. The results of the regression model showed a decrease in 

epistemic uncertainty with an increase in data size. It is ob- 

served that the posterior density gets sharper with an increase 

in data size. The Bayesian Linear regression model did not cap- 

ture the uncertainty for all the data points. To capture the uncer- 

tainty for all the data points, we have extended the work with 

Gaussian basis functions. The Gaussian Basis function is added 

to the Bayesian Linear Regression model and modified Bayesian 

Linear Regression model as a non-linear regression model to 

capture the model uncertainty. It is observed that the nonlinear 

regression model has captured the uncertainty for all the sam- 

ples of different sizes with less deviation compared to linear re- 

gression model. The non-linear regression model developed 

has shown the same results that the epistemic uncertainty is de- 

creased with an increase in data size. Further, to improve the 

results, we have designed polynomial regression model with 

varying degrees of freedom to capture the model uncertainty. 

The study found that the polynomial regression with the lowest 

degree captured the uncertainty and there is no difference be- 

tween the polynomials with the highest degree in capturing the 

uncertainty. The polynomial regression model with higher de- 

grees of freedom is not required because the data is sufficiently 

embedded in the shaded region of the regression model with a 

minimal degree.  
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