
1 

 

  

ISEIS 
 

 

 

Journal of Environmental Informatics Letters 9(1) 1-6 (2023) 

www.iseis.org/jeil           

 

Regional PM2.5 Estimation for Southern Ontario through Geographically 

Weighted Regression 
 

K. Huang1 * 
 

1 Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 

 

Received 20 January 2023; revised 01 March 2023; accepted 18 March 2023; published online 28 March 2023 

 
ABSTRACT. In this study, a geographically weighted regression (GWR) approach was adopted to forecast regional concentration of 

particulate matter 2.5 (PM2.5) for the southern Ontario based on both in situ meteorological measurement and Satellite retrievals of 

aerosol optical depth (AOD). The correlation between monitored concentration of PM2.5 and Satellite-retrieved AOD would be quantified. 

The ground-level PM2.5 for South Ontario area was then predicted using GWR with AOD and meteorological variables considered as 

inputs. The results indicated that performance of GWR was slightly better than the ordinary least squares (OLS) model, indicating spatial 

variations between independent and dependent variables. Consequently, the GWR model can help us to predict the PM2.5 concentration 

in terms of time or region with satellite data, and also help improve satellite data inversion. 
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1. Introduction 

At present, the fine particulate matter 2.5 (PM2.5) has be- 

come a hot spot and frontier in the field of global air pollution 

research. The atmospheric particle size ranges from 0.01 to 100 

μm, collectively referred to as total suspended particles (TSP), 

and PM2.5 is the atmospheric particulate matter with an aerody- 

namic diameter of 2.5 μm or less. PM2.5 belongs to the category 

of fine particles. The composition of the particles is complex, 

mainly depends on the source. The main source is from the sur- 

face of the dust, containing oxide minerals and other ingredients. 

Part of the particles is produced by natural processes, derived 

from volcanic eruptions, dust storms, forest fires and so on. PM2.5 

can also be converted from sulfur and nitrogen oxides. Fine par- 

ticles PM2.5 can cause significant impacts on the human health. 

Many studies have reported that PM2.5 increased the carcino- 

genicity and morbidity of the human body (Boldo et al., 2006; 

Fann et al., 2012; Hu et al., 2012), while mortality was also in- 

creased (Boldo et al., 2006; Mar et al., 2006; Fann et al., 2012). 

The impact on children’s health is also worthy of our attention 

(Hu et al., 2012). However, characterization of air quality and 

the resulting public health concerns requires accurate prediction 

of long-term PM2.5 concentration prediction. 

At present, many research works have been reported for 

concentration prediction of PM2.5 in different areas and different 

countries. Hu et al. (2013) applied geographically weighted re- 

gression to estimating ground-level PM2.5 concentrations in the 
southeastern U.S. Centered at the Atlanta Metro area, the whole  
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study area is 750 × 750 km2. In recent years, China’s air 

quality is getting worse, we pay more attention to PM2.5. Song 

et al. (2014) proposed a satellite-based geographically weighted 

regression model for estimating regional PM2.5 estimation over 

the Pearl River Delta region in China. Su et al. (2014) used the 

proxy-based approach and geographically weighted regression 

(GWR) to describe the change of ecosystem service values 

(ESV) and their relationship with urbanization in Shanghai sub- 

urb, China. Zou et al. (2016) using geographically weighted re- 

gression to produce high-resolution satellite map of fine particu- 

lates over Jing-jin-Ji region in China. Luo et al. (2017) used ge- 

ographically weighted regression to characterize spatiotemporal 

patterns of PM2.5 concentrations in Mainland China and then 

reveal its influencing factors. There are two objectives in this 

study. The first primary objective is to analyze the spatiotem- 

poral pattern of PM2.5 concentrations in China using more than 

a decade of data, and the other one is to explore the contributions 

of the influencing factors, including natural geographical and 

socioeconomic factors on PM2.5 using geographically weighted 

egression model. Ma et al. (2014) and You et al. (2016) applied 

geographically weighted regression to estimate national-scale 

ground-level PM2.5 concentration based on Moderate Resolution 

Imaging Spectroradiometer (MODIS) and Multi-angle Imaging 

Spectro Radiometer (MISR) aerosol optical depths (AOD) to es- 

timate PM2.5 concentration in China. 

In this study, the objective is to forecast regional concentra- 

tion of PM2.5 for the southern Ontario through geographically 

weighted regression approach based on both in-situ meteoro- 

logical measurement and Satellite retrievals of AOD. In detail, 

correlation between monitored concentration of PM2.5 and Satel- 

lite-retrieved AOD would be quantified. Then the ground-level 

PM2.5 for South Ontario area will be predicted using geographi- 
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cally weighted regression, in which AOD and meteorological 

variables are considered as inputs. 

2. Methodology 

Introduced by Brunsdon et al. (1996), geographically 

weighted regression was developed to allow relationships in a 

regression model to vary over space. In comparison to tradition- 

al regression approaches with constant coefficients over space, 

GWR can estimate model coefficient locally according to spa- 

tially distributed data points. GWR has been applied to a number 

of research topics related to ecology, environment, geography 

and regional sciences. Wang et al. (2016) used the model of 

GWR to analyze the explanatory factors of urban floods, and the 

spatially explicit relationships between explanatory factors and 

a dependent variable. At the same time there are researchers on 

the development and application of GWR. Zhang et al. (2016) 

developed a semi-physical geographically weighted regression 

model for real-time estimating of satellite-derived PM2.5. This 

study firstly fused Aqua AOD products based on two widely 

used algorithms [i.e., Dark Target (DT) and Deep Blue (DB)] 

and aligned them to real-time PM2.5 based on five time zones. 

Then the semi-physical GWR model combined with reanalysis 

of meteorological variables was developed to quantify the spatial 

distribution of PM2.5. Geographically weighted regression is a 

new spatial analysis method proposed in recent years, which 

can detect the nonstationary of spatial relations by embedding 

the spatial structure in the linear regression model. Geographi- 

cally weighted regression is a method of studying the quantita- 

tive relationship between two or more variables with spatial (or 

regional) distribution characteristics by regression theory, taking 

local features as weights when dealing with data. Geo-weighted 

regression is characterized by the fact that the regression func- 

tion is assumed to be the position function of the geometric po- 

sition of the observation point, and the spatial characteristics of 

the data are included in the model, which creates the conditions 

for the analysis of the spatial characteristics of the regression 

relation. van Donkelaar et al. (2015) applied geographically 

weighted regression to produce high-resolution satellite-derived 

PM2.5. 

As a local regression technique, GWR is an extension of 

global regression technology (Li et al., 2010). Fotheringham et 

al. (2002) give a detailed description of the algorithm and prin- 

ciple. Here, we only briefly introduce GWR. Consider the glob- 

al regression model given as follows: 

 

0        = + +i k ik ik
y x  (1) 

 

where yi is the dependent variable, xik represent the independent 

variables, εi is random error term at different spatial points (the 

subscripts i and k stand for the spatial locations and the indepen- 

dent variable number, respectively), β0 is the model intercept, 

and βk is the slope coefficient for kth independent variable. 

This type of model is aspatial, i.e., no geographical location 

information is considered in the estimation of the model param- 

eters, and all parameters are averages across the whole data set. 

The GWR technique extends the conventional global regres- 

sion of Equation 1 by adding a geographical location parameter, 

with the model rewritten as: 

 

( ) ( )0  ,    ,    i i i k i i ik ik
y u v u v x  = + +  (2) 

 

where (ui, vi) denotes the coordinates of the ith point in space, 

β0 and βk are parameters to be estimated, and again εi is the ran- 

dom error term at point i.  

To estimate the parameters in Equation 2, an observation is 

weighted according to its proximity to a specific point i, i.e., 

the distance between observation and point i determines the 

weight given to the observation; larger weights are assigned to 

observations closer to point i. Therefore, the weighting of an 

observation in the analysis is not constant, but a function of 

geographical location. The parameters in Equation (2) may be 

estimated by solving the following matrix equation: 

 

( ) ( )( ) ( )
1ˆ ,    ,  ,  T T

i i i i i iu v X W u v X X W u v y
−

=  (3) 

 

where ( )ˆ ,  i iu v represents the unbiased estimate of β, and W(ui, 

vi) is the weighting matrix, whose role is to ensure that observa- 

tions near to the specific location have larger weight. In this 

study, we used the following Gaussian weighting kernel func- 

tion form: 

 
2
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ij

ij
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w
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 
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 

 (4) 

 

where dij is the Euclidean distance between regression point i 

and neighboring observation j, and b represents a basal width of 

the kernel function, called bandwidth. 

In Equation (4), if j coincides with i, the weighting value 

of the data at that point is set to 1, while wij decreases accord- 

ing to a Gaussian curve as the distance dij increases (Fother- 

ingham et al., 2002; Shi et al., 2006). In this research, GWR anal- 

ysis was carried out using ArcGIS 10.2 software and all maps 

were produced using the same software. 

3. Overview of Study Area 

The study area for this analysis is the Southern Ontario. 

There are thirteen cities located in this area, including Toronto, 

Ottawa, Hamilton, Kitchener, London, St. Catharines, Oshawa, 

Windsor, Barrie, Kingston, Guelph, Brantford and Peterbor- 

ough. Southern Ontario has a humid continental climate with 

four distinct seasons. In July, the average high temperature is up 

to 25 ~ 28 °C (81 ~ 86.4 °F). In December, high temperatures 

range from 0 to 2 °C (32 ~ 35.6 °F). The maximum temperature 

in the history of Southern Ontario is 45 °C (113 °F) and the 

humidity index is about 52 °C (129.6 °F). When the cold spell 

struck, the winter temperature in the central and eastern parts of 

Southern Ontario could drop to −30 °C (−22 °F), while 

temperatures in the southwest and the Niagara region were 

below −20 °C (−4 °F). 
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3.1. In Situ PM2.5 Measurements 

The monthly average PM2.5 concentrations in South Ontario 

are downloaded from the Air Quality Ontario website. There are 

19 PM2.5 observation sites in those thirteen cities in southern 

Ontario (http://airqualityontario.com/history/index.php).  The 

PM2.5 concentrations in December 2012 are applied for this anal- 

ysis. These in situ measurements are considered as “True” values 

despite the possibility of measurement errors or representative- 

ness issues arising between these point measurements and area 

averaged concentrations, such as observed from satellite. 

 

3.2. Aerosol Optical Depth Data 

Satellite retrievals of AOD provide insight into the total 

atmospheric aerosol column, as represented by the extinction of 

light (van Donkelaar et al., 2015). These AOD retrievals are be- 

ing applied to increase the spatial extent of observational con- 

straints on PM2.5 for application to exposure assessment and epi- 

demiologic studies (van Donkelaar et al., 2015; You et al., 2016; 

Luo et al., 2017). In this study, MODIS aerosol data are applied 

for regional PM2.5 prediction. MODIS is an instrument aboard 

the Terra and Aqua satellites operated by National Aeronautics 

and Space Administration (NASA) (Remer et al., 2005). 

MODIS measures the abundance of atmospheric particles 

on the global scale at a moderate spatial resolution (10 km) (Hu 

et al., 2013). In this study, the MODIS aerosol data in December 

2012 are download from NASA Earth Observations website 

(https://neo.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_

AER_RA). The quality flag of AOD is 0.5. The AOD data (unit- 

less) for each site is selected by latitude and longitude. The 

latitude range is from 42°29.3′ to 45˚43.4′, longitude range is 

from −83˚07.3′ to −75˚67.6′. 

 

3.3. Meteorological Data 

A number of research works have revealed that the concen- 

tration of PM2.5 is also influenced by meteorological conditions, 

such as wind speed, temperature, and so on. In this study, the 

monthly average data of wind speed, temperature will be used 

for prediction of PM2.5 concentration over South Ontario. These 

data are downloaded from Environmental Canada (http://climat 

e.weather.gc.ca/historical_data/search_historic_data_e.html). 

4. Results Analysis 

Regression analysis is probably the most commonly used 

statistic method in the natural and social sciences. Regression is 

used to evaluate relationships between two or more feature at- 

tributes. Identifying and measuring relationships help better un- 

derstand what is going on in a place, predict where something 

is likely to occur, or examine causes of why things occur. Ordi- 

nary least squares (OLS) model is one of the most used tech- 

niques for parameter estimation in regression models. It is also 

the proper starting point for all spatial regression analyses. It can 

provide a global model of the variable or process to be under- 

stood and create a single regression equation to represent that 

process. In this study, the independent variables include AOD, 

temperature, and wind speed, while the dependent variable is 

the concentration of PM2.5. Therefore, the initial linear regres- 

sion model can be formulated as: 

 

2.5PM   AOD  TEMP  WS+ +  (5) 

 

where PM2.5 refers to the monthly ground-level PM2.5 concen- 

trations (μg/m3), AOD is the MODIS aerosol optical depth value 

(unitless), TEMP is the air temperature (°C), and WS refers to 

the surface wind speed (km/h). The predictor variables explained 

in Table 1. 

 

Table 1. Definitions of Predictor Variables in Equation (5) 

Name Unit Description 

PM2.5 μg/m3 PM2.5 concentrations 

AOD Unitless Terra/Aqua MODIS AOD 

TEMP °C Temperature 

WS km/h Wind speed 

 

Table 2. Parameterization of OLS Model for the Estimation 

of PM2.5 Concentrations in December 2012 

Parameter Value 

Number of observations 19 

Akaike’s Information Criterion (AIC) 33.55 

Multiple R2 0.82 

R2 adjusted 0.78 

 

Table 3. Parameterization of GWR Model for the Estimation 

of PM2.5 Concentrations in December 2012 

Parameter Value 

Neighbors 19 

Residual squares 2.55 

Effective number 5.27 

Sigma 0.43 

AIC 32.60 

R2 0.83 

 

Table 2 shows the parameterization of OLS model for the 

estimation of December 2012 PM2.5 concentrations. The results 

shows that the linear regression model can well capture the re- 

lationship between the selected independent variables and the 

PM2.5 concentration in South Ontario, with the value of R2 reach- 

ing 0.82. Table 3 shows the performance of GWR model. The 

results suggestion the prediction from GWR is slight better than 

OLS model, indicating that model parameters are spatially var- 

ied and the GWR model is generally more accurate and appro- 

priate for data analysis in this study. 

The spatial distribution of December 2012 PM2.5 concen- 

trations in Southern Ontario for the GWR model shows in Fig- 

ure 1. The overall trend in the PM2.5 concentration of Southern 

Ontario is getting higher from east to west. In detail, Peterbor- 

ough is located in the central Ontario in the Kawartha Lakes area 

in Ontario and is situated in the St. Lawrence lowland ecolog- 

ical zone, which is the south of the Canadian shield, and about 

35 kilometers north of Lake Ontario. In Peterborough, the PM2.5 

concentration is the lowest and the air quality is the best. This 

may because the city endless surrounds by the Little Lake at 
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Figure 1. The spatial distribution of PM2.5 concentrations in Southern Ontario for the GWR model in December 2012. 

 

 
 

Figure 2. Scatter plot of AOD vs. PM2.5 (top-right corner of Figure 2) and relationship with temperature and wind speed (bottom-left 

corner of Figure 2). 



K. Huang / Journal of Environmental Informatics Letters 9(1) 1-6 (2023) 

 

5 

 

Otonabee, and the Trent Canal runs along the eastern edge of 

the city, connecting the Little Lake to the Otonabee area. In 

comparison, The City of Windsor experienced the highest PM2.5 

concentration in the area of South Ontario, and also has the worst 

air quality. This mainly because that Windsor is located down- 

wind from several strong polluters, notably coal-burning power 

plants in the United States. The City of Toronto is also in an 

area with relatively high PM2.5 concentration, since the City of 

Toronto has biggest population as well as a great volume of 

vehicles and manufacturing factories, which are main emitters 

of PM2.5. 

In terms of the correlation among independent variables 

and the dependent variable, AOD and PM2.5 have a great rele- 

vance, as shown in Figure 2. Also, it can be observed that tem- 

perature and wind speed also have a certain impact on PM2.5. 

But the impacts are not obvious. Overall, AOD, temperature, 

wind speed and PM2.5 are positively correlated. 

5. Conclusions 

In this study, the geographically weighted regression (GWR) 

was applied for analysis and prediction of PM2.5 concentration 

in consideration of both satellite retrievals of AOD and in situ 

meteorological variables. GWR is one of most widely used spa- 

tial regression techniques, especially in geography and envi- 

ronment disciplines. GWR provides a local model of the variable 

or process by fitting a regression equation to every feature in the 

dataset. In this study, both ordinary least square (OLS) model 

and GWR model have been applied for concentration predic- 

tion of PM2.5. The results indicated that performance of GWR 

was slightly better than the OLS model, indicating spatial varia- 

tions between independent and dependent variables. The GWR 

model can help us to predict the PM2.5 concentration in terms of 

time or region with satellite data, and also help improve satellite 

data inversion. 
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