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ABSTRACT. The effective operation of reservoirs has been a key concern among the water resources management authorities as a con- 

sequence of global water shortages and decreased surface water runoff owing to increasing water demand and the effect of climate 

change. Water shortages, economic constraints, and environmental concerns have all contributed to the optimization of operations be- 

coming increasingly replaced by new technologies. Optimization operation of water resources system is a challenging issue because of its 

nonlinearity, multiple constraints, and several dimensions. To address the challenges associated with the operation of the multipurpose 

Mahanadi reservoir in Chhattisgarh, India. The present study utilizes the application of modified particle swarm optimization (MPSO). 

The present study was conducted to evaluate the performance of the particle swarm optimization (PSO) model in comparison to the current 

operating reservoir system, to minimize the sum of squared deviations in downstream release and demand. The average percentage 

changes in reliability (100.31%), resilience (85.02%), sustainability (24.54%), as well as vulnerability reduced up to 69.54%. The model 

also had the lowest error parameters in the system such as (RMSE = 1.3892, MAPE = 0.1003, NMSE = 0.1025, MAE = 38.6689, and 

MSE = 1.9299), despite having the highest R2, i.e., 0.8974. When applied to the Ravishankar Sagar reservoir, MPSO yields optimal, 

worst, average, and standard deviation (SD) values of 0.45, 0.56, 0.51, and 0.038, respectively. In terms of optimizing the release and 

storage rates, MPSO performed consistently better than the PSO and other metaheuristics reviewed from the literature during the study. 

Therefore, MPSO is advantageous in the search for the optimal reservoir operation policy because it is easy to implement, requires less 

functional evaluations, and quickly tracks global optimum. Hence this study provides significant evidence that MPSO can be used to 

effectively solve real optimization challenges. 
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1. Introduction 

1.1. Background of the Study 

The social behaviour of birds flocking or fish schooling 

served as inspiration for the evolutionary computation tech- 

nique known as modified particle swarm optimization (MPSO) 

(Sengupta et al., 2018). Optimization problems arise often in 

many disciplines, and this method has found widespread use in 

sectors as diverse as engineering, economics, and artificial in- 

telligence (AI) (Xu et al., 2021). This method has proven very 

useful for overcoming obstacles to the efficient utilization of 

systems with many reservoirs. To effectively manage water re- 

sources, multi-reservoir systems require an integrated operation 

of numerous reservoirs that are connected (Ehteram et al., 2021). 

The purpose is to determine, for a certain horizon of time, the 

appropriate release policy for each reservoir, taking into account 

such factors as water supply needs, flood prevention, and eco- 

logical constraints (Zhang et al., 2019). The standard particle  
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swarm optimization (PSO) algorithm is based on a particle-simu- 

lation model, (Yang, 2020). Particles locate the best solution by 

continuously updating their positions to explore the search 

space (Freitas et al., 2020). A modified PSO algorithm is used 

to tackle the unique difficulties of optimizing the performance 

of multi-reservoir systems (Gad, 2022). This adapted strategy 

takes into account the system’s inherent particularities, such as 

the presence of several objectives, and the consideration of a wide 

range of limitations, such as the interconnection of reservoirs. 

Furthermore, particle swarm heterogeneity can be improved, 

premature convergence can be avoided, and dynamic system 

conditions can be handled with the help of the modified PSO 

algorithm (Liu et al., 2020). These techniques enable the algo- 

rithm to reliably test the search space and modify its behaviour 

in response to shifting operational requirements (Sarker, 2021). 

Overall, the modified PSO algorithm for optimal usage of multi-

reservoir systems incorporate the benefits of classical PSO with 

problem-specific changes to meet the rigorous demands of this 

field (Gad, 2022). This method improves water allocation, flood 

prevention, and hydropower production by balancing competing 

goals, and incorporating operators and constraints, while utiliz- 

ing policies for robust optimization in the field of complex water 

management systems (Zhang et al., 2021). 
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1.2. Relevant Literature Study 

Currently, optimization techniques play a significant role 

in modern water resource management (Roushangar et al., 2021). 

Rao (1984) optimization methods can be broadly classified into 

two main categories: classical mathematics-based methods and 

search or numerical methods. The former relies on mathemati- 

cal principles, while the latter encompasses both direct and in- 

direct search approaches. In classical and indirect search meth- 

ods, the requirement is for the objective function to be continu- 

ous and have a derivative. Indirect search methods involve ex- 

ploring the variable space point by point using various algo- 

rithms, like random jumps, to find the optimal solution (Rao, 

1984). In various engineering problems, the objective function 

may contain multiple local and global optimal points, making 

it challenging for classical methods to differentiate and efficient- 

ly discover the globally optimal solution (Zeinalie et al., 2021). 

However, Water resources are renewable, but their volume re- 

mains constant, while human water demand is steadily increas- 

ing (Roushangar et al., 2021). Over the last century, there has 

been a six-fold increase in global water demand. However, water 

resources are facing significant pollution from various sources, 

such as industrial effluents, agricultural wastewater, and both 

urban and rural wastewater. These pollutants not only contami- 

nate the water but also surpass acceptable consumption stan- 

dards (Ghanbari et al., 2014). Furthermore, future scientific ac- 

tion in water resources management and planning relies on the 

crucial aspect of scientific decision-making. In the realm of water 

resources management, optimization stands out as a highly suit- 

able tool to address challenges effectively (Ahmadianfar and 

Zamani, 2020; Roushangar et al., 2021). 

Guidelines for optimizing reservoir operation management 

seek to maximize or minimize reservoir benefits without com- 

promising its objectives and constraints (Ai et al., 2022; Verma 

et al., 2023). The term “reservoir operating policy” is frequently 

employed to describe this. While it may seem like an obvious 

challenge to avoid flooding throughout the monsoon season, 

water conservation measures must be taken (Kaczmarek and 

Kindler, 1982; Techarungruengsakul et al., 2022). Therefore, 

to attain the best possible system performance in reservoir op- 

erating issues, decisions on releases in addition to storage must 

be made over time, while taking into significant differences in 

inflows and demands (Turner et al., 2021). Linear programming, 

dynamic programming, and meta-heuristic-based optimization 

algorithms, etc., are currently the most popular optimization 

methods (Yeh, 1985; Huang and Yuan, 2004; Liu et al., 2011; 

Zhao et al., 2011; Zhao and Zhao, 2014; Bai et al., 2015). Fac- 

tors like reservoir physical characteristics, objective function, 

constraints, uncertainty in inflows, and climate change all play 

an integral part in determining which optimization technique is 

best suited for a given study area (Stretch and Adeyemo, 2018). 

Consequently, there is no universal optimization technique that 

can be used for all possible reservoir operations (Dobson et al., 

2019). Therefore, it is necessary to generate options and evaluate 

them in terms of risk when formulating policies for the man- 

agement and operation of water resources. Typically, these three 

factors are used to assess risk: (1) The likelihood that certain 

adverse events will take place. (2) Many unfavorable events over 

a certain time. (3) The expected number of such events over the 

same time (Lai et al., 2022). Determining the most efficient 

practices for operating water storage structures is difficult. Evo- 

lutionary algorithms (EAs) have been adopted since conven- 

tional approaches have proven ineffective. EAs are a useful tool 

for determining the best ways to manage water storage facilities 

(Sharifi et al., 2021). One of the most popular EAs in this area 

is the MPSO algorithm. Numerous research has used conven- 

tional PSO or provided a variant of it (Al-Aqeeli and Mahmood 

Agha, 2020).  

Due to increased demand and limited supply, water scar- 

city has emerged as a major problem in the modern world (Al-

Jawad and Kalin, 2019). Reservoirs serve as a crucial structure 

for communities dependent on water supply. Reservoir optimi- 

zation is a conventional concern in water resources management, 

but its significance has not diminished (Tayfur, 2017; Wan et 

al., 2018; Chang et al., 2019). The sustainable development plan 

for water resources heavily relies on reservoirs being operated 

at their optimum efficiency, as this reduces the likelihood of nat- 

ural disasters like drought and flooding in the region (Nagesh 

Kumar and Janga Reddy, 2007; Chang and Chang, 2009; Yang 

et al., 2016a). For example, a reservoir system can be used for 

ecological water supply, flood prevention, electricity generation, 

and more. The optimal operation of a reservoir should take into 

account multi-objective problems to maximize the total benefits 

(Sun et al., 2018). Increasing pressures on the world’s freshwater 

supply is a result of human civilization’s rapid industrialization. 

However, striking the right balance between competing economic 

motives to maximize the overall advantages can be challenging 

(Yang et al., 2016b). 

To reduce the sum of the squared deviation between the 

supply and the intended demand, a reservoir’s optimal water al- 

location model is typically constructed (Tan et al., 2019). The 

dynamic programming techniques (Nandalal and Bogardi, 2007) 

suffer from the curse of dimensionality, while non-linear pro- 

gramming (Arunkumar and Jothiprakash, 2012) approaches 

have the disadvantage of a slow convergence rate (Yeh, 1985). 

Furthermore, conventional approaches to nonlinear program-

ming have limitations, including a high computational load, a 

low convergence rate, and a tendency for achieving merely a 

local optimum (Huang and Yuan, 2004; Bai et al., 2015). 

The genetic algorithm (GA) (Jothiprakash et al., 2011), PSO 

(Nabinejad et al., 2017), and the simulated annealing (SA) (Kan- 

grang et al., 2011) are all examples of meta-heuristic algorithms 

have experienced widespread application due to their durability 

and worldwide searching capabilities, and their efficiency and 

precision continue to evolve and enhance their performance. 

Kennedy and Eberhart (1995) proposed the particle swarm al- 

gorithm, a form of swarm intelligence algorithm, to model social 

behaviour. Particle swarm algorithms have been used in many 

different fields since, unlike GAs, they don’t require a complex 

operator (Monem and Kashkooli, 2017; Wan et al., 2017). Nu- 

merous research has been focused on rendering the particle 

swarm algorithm more efficient and accelerating its conver- 

gence. For instance, several parameter-tuning approaches have 

been proposed to boost algorithm reliability and speed up con- 

vergence (Sousa-Ferreira and Sousa, 2017). PSO incorporates 
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certain notable elements of various techniques to promote par- 

ticle diversity (Qu and Lou, 2013). However, there has only 

been some number of studies carried out regarding how well 

the algorithm can accommodate different reservoir operation 

rules. It may be violated by the output of such an algorithm, 

leading to undesirable outcomes such as inappropriate losses 

(Celeste and Billib, 2010), because of the use of random sam- 

pling in reservoir optimization models. 

In the present study, an MHA such as MPSO was formu- 

lated for optimizing reservoir operations, taking into account a 

time series of varying water demands from agriculture, domes- 

tic, and industries, as well as incoming water levels. The Ravis- 

hankar Sagar Reservoir is the lowest point where these reser- 

voirs can be drained. The Ravishankar Sagar Reservoir serves 

a variety of purposes, including hydropower generation, indus- 

trial water supply, and municipal water supply. The primary 

objective of this study is to operate this multi-reservoir system 

so that the total squared variation among downstream supply 

and demand is minimized. However, the MATLAB 2017a en- 

vironment was used to write all of the computation codes. 

2. Methods 

2.1. Particle Swarm Optimization (PSO) 

It is commonly utilized as a metaheuristic technique for 

water resource planning and management. PSO’s key benefit is 

that it provides nearly optimal solutions with minimal compu- 

tational effort. It has a strong rate of convergence and is not 

usually stuck in a local maximum (Chen et al., 2008; Montalvo 

et al., 2008). Studies show that the PSO model is more efficient 

than other collective models like genetic algorithms (Nagesh 

Kumar and Janga Reddy, 2007; Montalvo et al., 2008). Further- 

more, the PSO model has two input parameters than GA, show- 

ing its convenience and efficiency in reaching a satisfying solu- 

tion. PSO technique is used to forecast real-time runoffs (Chau, 

2004). A novel strategic mechanism called “elitist-mutation par- 

ticle swarm optimization” was developed (Nagesh Kumar and 

Janga Reddy, 2007). The EM-PSO findings were compared to 

standard PSO and GA models, and it was found that EM-PSO 

performed better than the other two techniques. PSO was com- 

pared to the ant colony and GA algorithm; compared to ACO 

and GA approaches, the PSO method provided plausible and 

superior water supply challenges (Montalvo et al., 2008; Kong 

et al., 2017). An algorithm is inspired by animal social behaviour 

such as insect swarming, schooling, and flocking (Kennedy and 

Eberhart, 1995). Model cost is low due to its basic theoretical 

background, coding, and performance. Additionally, it has been 

employed in various research areas, including unbounded con- 

tinuous optimization problems and genetic algorithms (Kennedy 

and Allen, 2001). As a result, particle swarm optimization merely 

restricts particle velocity and finds the optimum solution for all 

particles and individual particles, i.e., g-best and p-best. How- 

ever, each particle has a dynamically controlled velocity based 

on itself and other particles’ flying behaviours (He and Wang, 

2007).  

The inertia weight is a crucial parameter in the PSO algo- 

rithm that affects how particles navigate the search space. Dur- 

ing optimization, it regulates how much time is spent exploring 

and how much time is spent exploiting. Additionally, the pre- 

vious velocity influences the current velocity in proportion to 

the inertia weight. Moreover, particles are encouraged to con- 

tinue moving at their prior speeds due to an increase in inertia 

weight, which gives them more freedom of movement inside 

the search region. However, when the inertia weight is decreased, 

the impact of prior velocities is minimized, which is good for 

 

 
 

Figure 1. Procedure for accomplishing the PSO. 
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exploitation because it allows particles to converge toward fa- 

vourable locations. The PSO algorithm can effectively opti- 

mize both exploration and extraction by altering the inertia 

weight between iterations. At first, a greater inertia weight en- 

courages exploration, leading to a more comprehensive search. 

As the optimization process continues, the inertia weight is de- 

creased, allowing particles to zero in on the areas immediately 

surrounding optimal solutions. 

The selection of an adequate inertia weight is critical in 

PSO, as it influences the algorithm’s efficiency. Finding the 

ideal value or adaptively updating the inertia weight in-process 

requires careful tuning and often requires empirical studies.  

When inertia weight w is applied to Equation (1), it controls 

the impact of the past velocity history on subsequent velocity 

history. As a result, the inertia weight w, inhibits the popula- 

tion’s mutual interaction between global and personal search 

ability (Abraham et al., 2006). Empirical findings revealed that 

it is necessary to avoid the design space’s global search power 

increasing and progressively decreasing; the inertial factor 

should be applied to a large number (Shi and Eberhart, 1998, 

1999). The weighting component performance of the PSO model 

has improved, as Shi and Eberhart (1998, 1999). In addition, it 

has been shown that the most common method of optimizing a 

system consists of phases (refer to Figure 1): 

 

( )max min
max

max

w w n
w w

iTer

− 
=   (1) 

 

where wmax is initial weight, wmin is final weight. Moreover, n is 

the number of maximum iterations. 

 

2.2. Modified Particle Swarm Optimization (MPSO) 

MPSO stands for modified particle swarm optimization 

and is an improved form of the more common PSO technique. 

The convergence rate and search efficiency of the underlying 

algorithm both are significantly enhanced by the addition of 

new features found in MPSO (refer to Figure 2).  

The purpose of modified PSO is to improve the efficiency 

and convergence rate of the conventional PSO algorithm utiliz- 

ing several modifications. Adaptive inertia weight, velocity clamp- 

ing, as well as regional topology are a few examples of these 

algorithms. The algorithm may strike a good balance between 

exploration and exploitation with the help of adaptive inertia 

weight, which modifies the particle’s velocity in realtime. To 

keep the particles from scattering too far, we can “clamp” their 

velocities to a narrow range. Particle interactions and informa- 

tion dissemination are characterized by the neighborhood topol- 

ogy in which they occur. As a result of these changes, Modified 

PSO can effectively probe the search space and identify the 

best possible solution. Its usefulness has been demonstrated in 

fields as diverse as engineering, finance, and data mining. Mod- 

ified PSO is widely used because of its flexibility and efficiency 

in resolving difficult optimization problems. However, the mod- 

ified PSO can be classified into two methods which are as 

follows: 

(1) Direct method: In the MPSO algorithm, the direct 

method was developed. In this method, particles are free to 

move in any direction toward the best possible global position, 

rather than being limited to a predetermined search space. By 

making this adjustment, convergence is accelerated and opti- 

mization outcomes are enhanced without particles having to ex-  

 

 
 

Figure 2. Methodology adapted for MPSO algorithm. 
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plore the full search space. The direct method uses two differ- 

ent types of information to calculate a particle’s speed: the cog- 

nitive component, which accounts for the particle’s best position 

to date, and the social component, which accounts for the best 

position obtained by any particle in the swarm globally. In addi- 

tion, a direct factor is introduced to show the way to the highest 

position worldwide. Particles can accelerate their progress to- 

ward the optimal solution by combining these variables. Particle 

velocities in the direct method are based on a combination of 

the cognitive component, which corresponds to the particle’s 

most recent best position as well as the social component. An 

additional direct factor is included, denoting progress toward 

the optimal global location. Particles can accelerate their pro- 

gress toward the optimal solution by combining these variables.  

(2) Indirect method: MPSO is an iteration of the original 

PSO algorithm that uses an indirect method to tackle the short- 

comings of the original. Particles’ positions and velocities are not 

immediately updated in MPSO; rather, a more roundabout 

method is used. In the indirect method, a set of parameter vec- 

tors stands in for individual swarm particles. Particle behaviour 

is defined by these vectors, which are iteratively updated using 

equations. Particle movement closer to the optimal solution is 

affected by the parameters, which govern the particles’ veloci- 

ties and positions. Multiple techniques are incorporated into 

MPSO’s indirect method to better enhance exploration and ex- 

ploitation. Some examples are using local and global knowl- 

edge to direct the search and dynamically altering the param- 

eters. By efficiently employing a set of parameter vectors to 

steer the search process and increase the algorithm’s efficiency, 

the indirect method in MPSO provides a promising approach 

to solving optimization challenges. 

In practice, it is impossible to take either the direct or in- 

direct approach to the reservoir operation rule. Therefore, there 

is a potential for wasteful water loss. In this study, we use the 

period-specific water supply Xt as the iteration variable, and we 

integrate the operation rule to find Vt and PSt, which we then 

use to modify particle trajectories [Equations (2) and (3)]: 

 

1 ,  1,  2,  3,  ,  t t t tV V LS X t T−= + − =  (2) 

 

Thus, the water storage period (t) can be rewritten accord- 

ing to Equation (3): 

 

,maxt tV V=  (3) 

 

The optimization techniques PSO are both motivated by 

collective intelligence. As a group of particles (possible solu- 

tions) navigates a search space, its members learn from one an- 

other and adjust their positions accordingly. In contrast, PSO 

uses a basic approach, the particles update their positions based 

on the best solution they have individually found so far (personal 

best) and the best solution discovered by any particle within the 

entire swarm (global best). While MPSO retains the spirit of 

swarm-based exploration while introducing adjustments to im- 

prove its performance. These include increasing convergence 

speed, balancing exploration and exploitation, and making the 

algorithm more robust. 

As the name implies, PSO relies heavily on the position 

vectors of individual particles (Wu et al., 2019). involves de- 

ploying a swarm of particles on an exploration throughout a 

search space to locate the best possible answers. The position 

vector of a particle defines its unique identity within the search 

space. In most cases, the position vector will include coordi- 

nates that specify the particle’s position in the search space. 

The optimization problem’s number of variables is equal to the 

vector’s number of dimensions. In a two-dimensional scenario, 

for instance, the location vector would simply be the two coor- 

dinates (x, y). In addition, during optimization, particles adjust 

their location vectors according to their present speed and their 

degree of gravitational attraction to the most promising solu- 

tions. This modification is based on equations that strike a bal- 

ance between exploration and exploitation. Subsequently, Par- 

ticles navigate the search space and converge on potentially op- 

timal solutions by continuously modifying their location vec- 

tors. The position vectors are vital in determining the behaviour 

and motion of particles, which in turn enables them to search 

for the optimal solution collectively. 

In the PSO algorithm, particle position vectors are used to 

dynamically represent possible solutions, allowing for rapid 

exploration and exploitation of the search space in pursuit of 

optimal solutions (Marini and Walczak, 2015; Houssein et al., 

2021; Gad, 2022). Thus, the simplest way to proceed is to make 

decisions about supply and storage as iteration variables (Rani 

and Srivastava, 2016; Karami et al., 2019).  

 

2.3. Reservoir Performance Indices 

In the present section, time-based reliability, resilience, 

sustainability, and vulnerability indices are used to evaluate 

simulated and observed data performance given various mod- 

elling assumptions (Hashimoto et al., 1982). For each time step, 

the total volume of water supplied was measured and divided 

by the total water demand to obtain the volumetric reliability; 

resilience evaluates a system’s ability to bounce back after a 

failure, while vulnerability assesses a deficit. Furthermore, as an 

integrated measure of the system’s performance, we employed 

the sustainability index (Loucks, 1997), in which each water 

user’s performance criterion is geometrically average (Sandoval-

Solis et al., 2011). Furthermore, the detailed description of each 

performance indices is discussed in Verma et al. (2022a, 2022b). 

 

2.4. Model Evaluations Statistical Indices 

The accuracy of the deployed algorithm was evaluated us- 

ing statistical evaluation indices such as coefficient of determi- 

nation (R2), root mean squared error (RMSE), mean absolute 

percentage error (MAPE), mean absolute error (MAE), mean 

squared error (MSE), and normalized MSE (NMSE) [refer to 

Equations (4) to (9)] (Willmott, 1981): 

 

( )2 2

2 2

( )

( ) ( )
[ ]

( ) ( )

opt i opt t

opt i opt t

Re Re Re Re
R

Re Re Re Re

−  −
=

−  −



 
 (4) 
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There are two types of optimal release in this equation: Ret 

for the optimized algorithm, where Re is the mean release over- 

time period t, and Reopt(i) for the optimal release overtime period 

t, where optRe is the mean release overtime period t.  

3. Mahanadi Reservoir Project Complex: Case Study 

3.1. Description of the Study Area 

The Mahanadi Reservoir Project (MRP) Complex consists 

of multiple reservoirs that serve different purposes. Both the 

Mahanadi and the Pairi basins are included. However, an es- 

sential source of water for the Mahanadi is the Pairi River. The 

river begins in the Bhatigarh hills close to Bindranavagarh in 

Gariaband District and flows southeast to merge with the Ma- 

hanadi close to Rajim in the same district of Chhattisgarh, India 

(Sahu et al., 2022, 2023). The river is 90 km long and there will 

be four reservoirs built for this project. From the Sondur 

reservoir in the Pairi basin, water is supplied via a feeder canal 

to the Dudhawa reservoir in the Mahanadi basin (Figure 3).  

The Sillari River is a branch of the Mahanadi in central- 

eastern India, and the dam on this river is known as the Murrum 

Silli Dam (also spelled Madam Silli and Mordem Silli). The 

governor of the British Raj supervised its construction, and the 

structure was initially named for her. It was the inaugural dam 

in Asia that employed siphon spillways, and construction lasted 

from 1914 to 1923. From Raipur to Madamsilli is around 95 km. 

It is widely recognized as one of Chhattisgarh’s finest examples 

of structure design. It was designed especially for irrigation. 

Furthermore, the Kanker district of Chhattisgarh, India is situated 

at Dudhawa Dam. The dam was not completed until 1964, but 

its work started in 1953. It is located 21 km from Sihawa and 

29 km from Kanker, it spans the Mahanadi River, which origi- 

nates in the small village of Dudhawa. The retaining wall of the 

structure is 24.53 m in height and 2,906.43 m in length (Sahu 

et al., 2022, 2023; Verma et al., 2023). The catchment area for 

the reservoir is 625.27 km2. The embankment on the dam’s right 

flank identifies it as an earthen structure. 

According to Figure 3, the aforementioned reservoirs are 

serially interconnected to each other. In addition, the Murum- 

silli and Dudhawa dams serve as feeder dams for a Ravishankar 

Sagar reservoir which acts as an outlet to facilitate the water 

supply for different purposes. Irrigation, Industrial, and Munic- 

ipal of Raipur, Durg, Mahasamund, and Balodabazar districts 

mainly. However, the Ravishakar Sagar reservoir is connected 

to two different canal systems, i.e., Mahanadi main canal (MMC) 

and Mahanadi feeder canal (MFC). Where MMC is used as an 

industrial water supply for the Bhilai steel plant Bhilai and MFC 

is served for irrigation and municipal purposes. 

Furthermore, during the present study, the monthly release 

and demand data (i.e., 1989 ~ 2020) including reservoir char- 

acteristics is taken from Water Resource Division Dhamtari, 

Rudri Circle, Rudri, Chhattisgarh. 

 

 
 

Figure 3. Index map of MRP Complex, Chhattisgarh [source: Jaiswal et al., (2013)]. 
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Figure 4. Procedure for model formulation and reservoir optimization [source: Lai et al. (2022)]. 

 

3.2. Model Formulation and Reservoir Operation 

Optimization 

This section provides a basic framework for developing and 

formulating an optimization problem for a reservoir system. 

Figure 4 shows the most typical steps in the optimization pro- 

cess while utilizing conventional or metaheuristic algorithms. 

(1) The choice of decision variables and constraint value, as 

well as its categorization 

(2) Examine the objective function and constraints. 

(3) Values for decision variables need to be determined. 

(4) When the performance objective has been reached or the 

criteria for stopping have been met, steps 3 and 4 are carried 

out. The third step of the operation is typically where the algo- 

rithms diverge from one another. Different algorithms use dif- 

ferent search mechanisms at the moment. Compared to tradi- 

tional mathematical optimization methods, the meta-heuristic 

algorithm has a few advantages (Singh, 2014; Zhang et al., 2019). 

 

3.2.1. Model Formulation 

There is a lot of uncertainty around the hydrologic param- 

eters used in reservoir management systems. Uncertainties in 

mathematical programming models can be handled in either of 

the following ways: indirectly, through parameter tuning of a de- 

terministic model, or directly, through the use of meta-heuristic-

based approaches (like MPSO-driven optimization algorithms). 

 

3.2.2. Penalty Function 

The intricacy of the reservoir system being studied will de- 

termine the optimum solution. The most frequent conflict in 

reservoir systems consists of irrigation and hydropower. How- 

ever, if ecology or navigation serve as additional factors, this 

will require more constraints, or in certain circumstances, the 

penalty function (PF) (Sylla, 1995) must be applied in conjunc- 

tion with the constraints to transform the PF from an infeasible 

region toward a feasible region, allowing the (Optimization 

model) MO to be resolved (Long et al., 2023). Therefore, res- 

ervoir models must have the flexibility to switch from local as 

well as global search algorithms as the complexity of the reser- 

voir system increases. This is the only way to ensure top-notch 

service in terms of release operational policy management. 

 

3.2.3. Objective Function 

If a single or multiple objective function was employed in 

the case study, for example, standard tuning parameters should 

be adequate. This is because maximizing efficiency and reduc- 

ing convergence time is an essential concern. However, more 

complex reservoir models can be used for evaluation. The ob- 

jective function is given in Equation (10): 

 
12 2

1
( )t tt

Z Minimize RI DI
=

= −  (10) 

 

where 𝑅𝐼𝑡 = Monthly irrigation release, and 𝐷𝐼𝑡 = Monthly 

downstream irrigation demand. 

(1) Mass Balance Equation 

Final storage equals the monthly inflow during the period 

t mines monthly water release during the period t mines month- 

ly evaporation loss (all the data are in months): 

 

1 ,  1,  2,  3,  ,  t t t t t tS S I E R O t N+ = + − − − =  (11) 

 

where St+1 is final storage, St is initial storage, I is inflow, Rt is 

water release, and Et is evaporation loss.  

(2) Release Constraints 

The irrigation, industrial, and domestic release in month t 

should be less than or equal to the irrigation, industrial, and do- 

mestic demand in that month, as shown in Equation (12): 

 

,  1,  2,  3,  ,  12t tRI DI t =  (12) 

 

(3) Storage Constraints 

In any particular month, reservoir storage should not ex- 

ceed the reservoir’s capacity and should not fall below the dead 

storage capacity, which is indicated in Equation (13): 

 

min t maxS S S   (13) 



S. Verma et al. / Journal of Environmental Informatics Letters 10(2) 132-144 (2023) 

139 

 

where S𝑚𝑖𝑛 = Dead storage (M·m3); S𝑚𝑎𝑥 = Maximum storage 

(M·m3). 

(4) Evaporation Loss 

Losses due to evaporation in reservoirs over time t, where 

t is a function of current reservoir storage. For evaporation losses, 

the ideal expression is as follows: 

 

1 ,  1,  2,  3,  ,  12
2

t t
t t t

S S
E a b t+ +  
= +   =  

  
 (14) 

 

(5) Overflow Constraints 

When the reservoir’s storage capacity exceeds the reser- 

voir’s maximum capacity, the overflow constraint minimizes 

spills. The relevant limitation can be stated as follows: 

 

1 ,  1,  2,  3,  ,  12t t maxO S S t+= −  =  (15) 

 

0,  1,  2,  3,  ,  12tO t  =  (16) 

 

The developed programs are run using the meta-heuristic 

algorithm models that have been written in MATLAB pro- 

gramming language on an Intel (R) Core (TM) 8GB RAM @ 

1.60GHz. They are employed for two different reservoir oper- 

ation periods. The reservoir system operation model is for a 

single year, i.e., NT = 12. The reservoir operation in the RSOM-

II model is for a relatively long time, about 31 years (NT = 372). 

In the following part, the outcomes of these two models will be 

discussed in the results and discussion section. 

However, for a better understanding of reservoir behaviours 

and what is the importance of any input and output in the reser- 

voir system, Figure 5 represents the schematic view of Ravis- 

hankar Sagar Reservoir including all the variables for reservoir 

formulations.  

4. Results and Discussion 

Studies were conducted employing inertia weight damp- 

ing ratio (w-damp), the number of search agents, and the num- 

ber of iterations, with the parameters modified within the fol- 

lowing range since MPSO depends on fine-tuning its funda- 

mental parameters. c1 = c2 = 2 (Kennedy and Spears, 1998), w 

= 1, w-damp = 0.9 (Reddy and Kumar, 2006), c1 = c2 = 2, r1 = 

r2 = 0 ~ 1 (Baltar and Fontane, 2006), w = 1 (Mendes et al., 

2004), w = 0.5 ~ 1.4 (Elbeltagi et al., 2005). The parameters 

used in the current investigation are as follows: w = 1, w-damp 

= 0.9, c1 = 1.5, c2 = 2.0, r1 = 2.05, r2 = 2.05, n = 100, and Imax = 

200. The GA model with crossover and mutation probabilities 

yields the best objective function value when w-damp = 0.9, n 

= 100. Each iteration of the algorithm results in a change in the 

value of the objective function. Similarly, after 200 iterations 

of the MPSO model. The algorithm takes longer to run and 

yields fewer desirable results with each subsequent iteration. 

This results in 200 total iterations of the MPSO algorithm. Fig- 

ures 6 exhibit visual representations of these parameters for the 

multi-reservoir system. 

 
 

Figure 5. Graphical representation of reservoir system 

[source: Lai et al. (2022)]. 

 

 
 

Figure 6. Sensitivity analysis by MPSO model (a) w-damp, (b) 

number of search agents, and (c) number of iterations. 



S. Verma et al. / Journal of Environmental Informatics Letters 10(2) 132-144 (2023) 

140 

 

Table 1. Criteria for Assessing the Accuracy of Models 

Case Study Algorithm Evaluation Criteria 

Multi-reservoir 

System 
Modified Particle Swarm Optimization 

R2 RMSE MAPE NMSE MAE MSE 

0.8794 1.3892 0.1003 0.1025 38.6689 1.9299 

Table 2. Analysis of 10 Independent Runs 

Number of Runs 
MPSO 

Optimal Value CPU Time (s) 

1 0.46 5.72 

2 0.56 5.73 

3 0.48 6.34 

4 0.45 5.64 

5 0.53 5.55 

6 0.51 5.94 

7 0.52 5.57 

8 0.56 5.68 

9 0.53 6.38 

10 0.5 5.53 

Best 0.45 

Worst 0.56 

Average 0.51 

SD 0.038006 

CV 0.001444 

Best CPU Time (s) 5.53 

 

Table 3. Contrast the Standard Deviation and Coefficient of 

Variation Statistics Used in the Present Study to Those Used 

in the Work by Akbarifard et al. (2021) 

 

Table 4. Comparison of Obtained Results Concerning 

Available Literature 

Optimization Model Performance Evaluation  

R2 RMSE 

MPSO Present Study 0.897 1.389 

Literature 0.834 

(Akbarifard 

et al., 2021); 

0.810 (ICA) 

(Sharifi et 

al., 2021) 

2.82 (Akbarifard et 

al., 2021); 

4.556 (Ehteram et 

al., 2018); 

1.782 (HS) (Sharifi 

et al., 2021) 

 

The operational policy for a study region from 1989 ~ 

1990 to 2019 ~ 2020 was derived using the outcomes of a parti- 

cle swarm optimization method. MATLAB was used to per- 

form the method, and the resulting deficits during the period 

1989 ~ 1990 to 2019 ~ 2020 are plotted graphically, with time 

t (years) on the X-axis and releases (M·m3) on the Y-axis. 

When comparing the reservoir system operation model to the 

water release under existing policy, water shortages have only 

occurred in 1989 ~ 1990, 1990 ~ 1991, and 2002 ~ 2003 (refer  

 

 
 

Figure 7. Modified particle swarm optimization’s release 

policy is depicted graphically concerning the existing release 

and demand. 

 

to Figure 7). 

The optimization model utilized historical data for 31 years, 

from June 1989 ~ 1990 to May 2019 ~ 2020. The effectiveness 

of a model is determined as per the methods described in Sec- 

tion 2.3 and enumerated in Table 1. In comparison to the exist- 

ing operational policy, the MPSO model improves performance 

by an average of 100.31% in reliability, 85.02% in resilience, 

and 24.54% in sustainability, with a reduction in vulnerability 

of up to 69.54% (refer to Figure 8). To compare the efficiency 

of the MPSO model in multi-reservoir systems, we used the five 

statistical assessment criteria described in Section 2.3. Moreover, 

the model has the lowest error parameters (RMSE = 1.3892, 

MAPE = 0.1003, NMSE = 0.1025, MAE = 38.6689, and MSE 

= 1.9299), despite having the highest R2 (0.8974) (refer to 

Table 1). 

Table 2 shows that MPSO yielded the optimal ideal value 

of 0.45, the least-worst optimal value of 0.56, along with the 

average optimal value of 0.051, and the best standard deviation 

value of 0.038. Furthermore, MPSO displays the lowest coeffi- 

cient of variation with a value of 0.001444 with the quickest 

CPU time with a length of 5.53 s. When it comes to obtaining 

maximum efficiency during reservoir management in the Rav- 

ishankar Sagar, MPSO is a reliable model because of its low 

SD. The fact that MPSO has the lowest CV is, nevertheless, 

worth noting. This suggests the fact that the MPSO has the least 

resiliency, or capacity to recover and resume normal operation 

after a break in operations. Despite having the lowest resiliency, 

MPSO was shown to be the most appropriate and reliable mod- 

el for assessing and optimizing the Ravishankar Sagar reservoir 

in this study. 

Models SD CV 

The Present Study (MPSO) 0.038006 0.001444 

MSA 0.0029 0.0192 

PSO 0.3078 0.8096 

GA 0.5864 0.5458 
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Figure 8. Graphical representation of release policy for swarm optimization concerning existing policy (a) reliability, (b) 

reilience, (c) sustainability, and (d) vulnerability. 

 

Results from a comparable study performed by Akbarifard 

et al. (2021) on optimizing the Karun-4 hydropower reservoir 

using MSA, PSO, and GA are compared with the standard de- 

viation and coefficient of variation methods used in the current 

study. The SD is found to be 0.038006 for the present study 

(MPSO), 0.0029 for MSA, 0.30789 for PSO, and 0.5864 for 

GA. Since the optimization values in the present study (MPSO) 

are most similar to the mean or predicted values, this suggests that 

the model is very reliable. However, the CV for the present study 

is 0.001444, and compared to MSA (0.0192), PSO (0.8096), and 

GA (0.5458), MSA is significantly better (refer to Table 3). There- 

fore, according to the results of the present case study conducted 

on the optimization of the Ravishankar Sagar reservoir, the MPSO 

proved to be the most robust and reliable model. 

Comparing our findings to earlier research on multi-reservoir 

system operation optimization, we have come up with Table 4. 

As compared to other evolutionary algorithms available in the 

literature, GA has the best results in terms of coefficient of 

determination (R2) and root mean square error, MPSO performs 

superior. 

5. Conclusions 

The present study concludes that MPSO is the optimal me- 

taheuristic for optimizing the operation of dam reservoirs based 

on quantitative analysis as well as the existing operating policy 

(i.e., Standard Operating Policy [SOP]). In the present study, a 

multi-reservoir system’s overall performance has improved by 

increasing average percentage changes to 100.31, 85.02, and 

24.54% for reliability, resilience, and sustainability, respectively 

while vulnerability reduces up to 69.54%. In addition, the model 

had the maximum R2 in the multi-reservoir system (0.8974), yet it 

had the least error parameters (such as RMSE = 1.3892, MAPE 

= 0.1003, NMSE = 0.1025, MAE = 38.6689, and MSE = 1.9299) 

in the system. Furthermore, MPSO is the more dependable meta- 

heuristic algorithm mainly because it yields a higher SD than 

MSA, but MSA is the more robust metaheuristic due to its 

higher CV. This is based on comparisons with the best meta- 

heuristic coming from an identical investigation on the Karun-

4 hydropower reservoir according to Akbarifard et al. (2021). 

Additionally, the optimal value, worst optimal value, average 

optimal value, and standard deviation values for MPSO at Rav- 

ishankar Sagar reservoir are 0.45, 0.56, 0.51, and 0.038, respec- 

tively, making it the robust solution altogether. Throughout the 

test, MPSO consistently outperformed as compared to the PSO 

algorithm and other studied metaheuristics available in the lit- 

erature in terms of optimizing the rates at which water was re- 

leased and stored. Based on the results of this study, additional 

research could concentrate on hybridizing MPSO or imple- 

menting more sophisticated methodologies to enhance its per- 

formance in optimizing dam reservoir operations. However, this 

study is limited since it does not examine how climate change 

would affect the performance of Ravishankar Sagar Reservoir. 

Therefore, it is advised that the climatic situations at Ravis- 

hankar Sagar Reservoir operation be researched in addition to 

the hybridization of MPSO. 

Furthermore, metaheuristic-based optimization algorithms 

may exhibit inefficiency when applied to large-scale problems 

due to their substantial demand for computational resources. Ad- 

ditionally, metaheuristic-based optimization algorithms are sus- 

ceptible to premature convergence, which can cause them to be- 

come trapped in local optima instead of finding the global opti- 

mum. It’s also possible that metaheuristic-based optimization 

algorithms have trouble finding an appropriate balance between 
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exploration and exploitation, leading to less-than-ideal solutions. 

In conclusion, the fine-tuning of algorithm-specific parameters 

can prove to be a complex and time-consuming task. Moreover, 

applying these metaheuristic-based optimization algorithms to 

certain types of problems may lack straightforwardness and re- 

quire careful consideration of their suitability and adaptability. 

However, in the present study, the efficacy of the method 

relies heavily on parameter settings, posing challenges in iden- 

tifying appropriate values for diverse problem instances. As the 

number of reservoirs and decision variables increases, the com- 

putational complexity of the Modified Particle Swarm Optimi- 

zation increases substantially, making it less scalable and lim- 

iting its applicability to large-scale multi-reservoir systems. Fi- 

nally, Modified Particle Swarm Optimization may struggle to 

handle constraints effectively, which results in implausible so- 

lutions that fall short of what is expected by the system. 

 
Acknowledgments. The author expresses gratitude to NIT Raipur for its 

constant support and also thanks Water Resource Division Dhamtari, 

Rudri Circle, Chhattisgarh India for providing me with the hydrological 

as well as reservoir data. 

References 

Abraham, A., Collins, D. and Martindale, R. (2006). The coaching 

schematic: Validation through expert coach consensus. Journal of 

Sports Sciences. 24(6), 549-564. https://doi.org/10.1080/02640410 

500189173 

Ahmadianfar, I. and Zamani, R. (2020). Assessment of the hedging pol- 

icy on reservoir operation for future drought conditions under cli- 

mate change. Climatic Change. 159(2), 253-268. https://doi.org/10. 

1007/s10584-020-02672-y 

Ai, Y.D., Ma, Z.Z., Xie, X.M., Huang, T. and Cheng, H.G. (2022). Op- 

timization of ecological reservoir operation rules for a northern river 

in China: Balancing ecological and socio-economic water use. Eco- 

logical Indicators. 138, 108822. https://doi.org/10.1016/j.ecolind. 

2022.108822 

Akbarifard, S., Sharifi, M.R., Qaderi, K. and Madadi, M.R. (2021). 

Optimal operation of multi-reservoir systems: Comparative study of 

three robust metaheuristic algorithms. Water Supply. 21(2), 941-958. 

https://doi.org/10.2166/ws.2020.368 

Al-Aqeeli, Y.H. and Mahmood Agha, O.M., (2020). Optimal opera- 

tion of multi-reservoir system for hydropower production using par- 

ticle swarm optimization algorithm. Water Resources Management. 

34, 3099-3112. https://doi.org/10.1007/s11269-020-02583-8 

Al-Jawad, J.Y. and Kalin, R.M. (2019). Assessment of water resources 

management strategy under different evolutionary optimization tech- 

niques. Water. 11(10), 2021. https://doi.org/10.3390/w11102021 

Arunkumar, R. and Jothiprakash, V. (2012). Optimal reservoir opera- 

tion for hydropower generation using non-linear programming model. 

Journal of The Institution of Engineers (India): Series A. 93, 111-

120. https://doi.org/10.1007/s40030-012-0013-8 

Bai, T., Wu, L.Z., Chang, J.X. and Huang, Q. (2015). Multi-objective 

optimal operation model of cascade reservoirs and its application on 

water and sediment regulation. Water Resources Management. 29, 

2751-2770. https://doi.org/10.1007/s11269-015-0968-0 

Baltar, A. and Fontane, D.G. (2006). A multiobjective particle swarm 

optimization model for reservoir operations and planning. Proceed- 

ings of International Conference on Computing and Decision Making 

in Civil and Building Engineering, Montréa, 1544-1552. 

Celeste, A.B. and Billib, M. (2010). The role of spill and evaporation 

in reservoir optimization models. Water Resources Management. 24, 

617-628. https://doi.org/10.1007/s11269-009-9468-4 

Chang, J., Guo, A., Wang, Y., Ha, Y., Zhang, R., Xue, L. and Tu, Z. 

(2019). Reservoir operations to mitigate drought effects with a hedg- 

ing policy triggered by the drought prevention limiting water level. 

Water Resources Research. 55(2), 904-922. https://doi.org/10.1029/ 

2017WR022090 

Chang, L.C. and Chang, F.J. (2009). Multi-objective evolutionary al- 

gorithm for operating parallel reservoir system. Journal of Hydrolo- 

gy. 377(1-2), 12-20. https://doi.org/10.1016/j.jhydrol.2009.07.061 

Chau, K. (2004). Rainfall-runoff correlation with particle swarm opti- 

mization algorithm. International Symposium on Neural Network. 

Springer. pp 970-975. ISBN: 978-3-540-22843-1 

Chen, X.N., Duan, C.Q., Qiu, L. and Huang, Q. (2008). Application of 

large scale system model based on particle swarm optimization to 

optimal allocation of water resources in irrigation areas. Transac- 

tions of the CSAE, 24(3), 103-106. 

Dobson, B., Wagener, T. and Pianosi, F. (2019). An argument-driven 

classification and comparison of reservoir operation optimization 

methods. Advances in Water Resources. 128, 74-86. https://doi.org/ 

10.1016/j.advwatres.2019.04.012 

Ehteram, M., Banadkooki, F.B., Fai, C.M., Moslemzadeh, M., Sapi- 

tang, M., Ahmed, A.N., Irwan, D. and El-Shafie, A. (2021). Optimal 

operation of multi-reservoir systems for increasing power genera- 

tion using a seagull optimization algorithm and heading policy. En- 

ergy Reports. 7, 3703-3725. https://doi.org/10.1016/j.egyr.2021.06. 

008 

Ehteram, M., Karami, H. and Farzin, S. (2018). Reducing irrigation de- 

ficiencies based optimizing model for multi-reservoir systems uti- 

lizing spider monkey algorithm. Water Resources Management. 32 

(7), 2315-2334. https://doi.org/10.1007/s11269-018-1931-7 

Elbeltagi, E., Hegazy, T. and Grierson, D. (2005). Comparison among 

five evolutionary-based optimization algorithms. Advanced Engi- 

neering Informatics. 19(1), 43-53. https://doi.org/10.1016/j.aei.200 

5.01.004 

Freitas, D., Lopes, L.G. and Morgado-Dias, F. (2020). Particle swarm 

optimisation: A historical review up to the current developments. 

Entropy. 22(3), 362. https://doi.org/10.3390/e22030362 

Gad, A.G. (2022). Particle swarm optimization algorithm and its appli- 

cations: A systematic review. Archives of Computational Methods 

in Engineering. 29(5), 2531-2561. https://doi.org/10.1007/s11831-

021-09694-4 

Ghanbari, R., Nemati, Z. and Borzoi, A. (2014). Methods of using 

Water Resources Management in agriculture (Challenges and Strate- 

gies). Second National Conference on Planning, Environmental Pro- 

tection and Sustainable Development, Tehran.  

Hashimoto, T., Stedinger, J.R. and Loucks, D.P. (1982). Reliability, 

resiliency, and vulnerability criteria for water resource system per- 

formance evaluation. Water Resources Research. 18(1), 14-20 https: 

//doi.org/10.1029/WR018i001p00014 

He, Q. and Wang, L. (2007). An effective co-evolutionary particle 

swarm optimization for constrained engineering design problems. 

Engineering Applications of Artificial Intelligence. 20(1), 89-99. 

https://doi.org/10.1016/j.engappai.2006.03.003 

Houssein, E.H., Gad, A.G., Hussain, K. and Suganthan, P.N. (2021). 

Major advances in particle swarm optimization: Theory, analysis, 

and application. Swarm and Evolutionary Computation. 63, 100868. 

https://doi.org/10.1016/j.swevo.2021.100868 

Huang, W.C. and Yuan, L.C. (2004). A drought early warning system 

on real-time multireservoir operations. Water Resources Research. 

40(6). https://doi.org/10.1029/2003WR002910 

Jaiswal, S.K., Varma, M.K. and Gupta, M. (2013). Planning for opti- 

mum use of water resources of MRP complex using MIKE BASIN. 

Journal of Indian Water Resources Society. 33(1), 15-22. 

Jothiprakash, V., Shanthi, G. and Arunkumar, R. (2011). Development 

of operational policy for a multi-reservoir system in India using ge- 

netic algorithm. Water Resources Management. 25, 2405-2423. https: 

https://doi.org/10


S. Verma et al. / Journal of Environmental Informatics Letters 10(2) 132-144 (2023) 

143 

 

//doi.org/10.1007/s11269-011-9815-0 

Kaczmarek, Z. and Kindler, J., 1982. The operation of multiple reser- 

voir systems. https://pure.iiasa.ac.at/2024 

Kangrang, A., Compliew, S. and Hormwichian, R. (2011). Optimal reser- 

voir rule curves using simulated annealing. Proceedings of the Insti- 

tution of Civil Engineers-Water Management. 164(1), 27-34. https: 

//doi.org/10.1680/wama.800103 

Karami, H., Farzin, S., Jahangiri, A., Ehteram, M., Kisi, O. and El-Shafie, 

A. (2019). Multi-reservoir system optimization based on hybrid grav- 

itational algorithm to minimize water-supply deficiencies. Water Re- 

sources Management. 33, 2741-2760. https://doi.org/10.1007/s112 

69-019-02238-3 

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Pro- 

ceedings of the IEEE International Conference on Neural Networks, 

Perth, 4, 1942-1948.  

Kennedy, J. and Spears, W.M. (1998). Matching algorithms to prob- 

lems: An experimental test of the particle swarm and some genetic 

algorithms on the multimodal problem generator. IEEE World 

Congress on Computational Intelligence, 1998 IEEE International 

Conference on Evolutionary Computation Proceedings. Anchorage. 

78-83. https:// doi.org/10.1109/ICEC.1998.699326 

Kennedy, K. and Allen, J.R. (2001). Optimizing Compilers for Modern 

Architectures: A Dependence-Based Approach. Morgan Kaufmann 

Publishers Inc, pp 1-790. ISBN: 978-1-55860-286-1 

Kong, A.L., Liang, S., Li, C.L., Liang, Z.F. and Chen, Y. (2017). Opti- 

mizing micro-grid operation based on improved PSO. Journal of 

Hohai University (Natural Sciences). 45(6), 550-555. https://doi. 

org /10.3876/j.issn.1000-1980.2017.06.012 

Lai, V., Essam, Y., Huang, Y.F., Ahmed, A.N. and El-Shafie, A. (2022). 

Investigating dam reservoir operation optimization using metaheuris- 

tic algorithms. Applied Water Science. 12(12), 280. https://doi.org/ 

10.100 7/s13201-022-01794-1 

Lai, V., Huang, Y.F., Koo, C.H., Ahmed, A.N. and El-Shafie, A. (2022). 

A review of reservoir operation optimisations: From traditional models 

to metaheuristic algorithms. Archives of Computational Methods in 

Engineering. 29(5), 3435-3457. https://doi.org/10.1007/s11831-02 

1-09701-8 

Liu, H., Zhang, X.W. and Tu, L.P. (2020). A modified particle swarm 

optimization using adaptive strategy. Expert Systems with Appli- 

cations. 152, 113353. https://doi.org/10.1016/j.eswa.2020.113353 

Liu, X., Guo, S., Liu, P., Chen, L. and Li, X., 2011. Deriving optimal 

refill rules for multi-purpose reservoir operation. Water Resources 

Management, 25, 431-448. https://doi.org/10.1007/s11269-010-970 

7-8 

Long, W.Y., Dong, H.C., Wang, P., Huang, Y., Li, J.L., Yang, X.B. 

and Fu, C.B. (2023). A constrained multi-objective optimization al- 

gorithm using an efficient global diversity strategy. Complex & Intel- 

ligent Systems. 9(2), 1455-1478. https://doi.org/10.1007/s40747-

022-00851-1 

Loucks, D.P. (1997). Quantifying trends in system sustainability. Hy- 

drological Sciences Journal. 42(4), 513-530 https://doi.org/10.1080 

/02626669709492051 

Marini, F. and Walczak, B. (2015). Particle swarm optimization (PSO). 

A tutorial. Chemometrics and Intelligent Laboratory Systems. 149, 

153-165. https://doi.org/10.1016/j.chemolab.2015.08.020 

Mendes, R., Kennedy, J. and Neves, J. (2004). The fully informed par- 

ticle swarm: Simpler, maybe better. IEEE Transactions on Evolution- 

ary Computation. 8(3), 204-210. https://doi.org/10.1109/TEVC.200 

4.826074 

Monem, M.J. and Kashkooli, B.S. (2017). New discrete particle swarm 

optimization applied to the design of pressurized irrigation networks. 

Journal of Irrigation and Drainage Engineering. 143(1), 04016071. 

https://doi.org/10.1061/(ASCE)IR.1943-4774.0001110 

Montalvo, I., Izquierdo, J., Pérez, R. and Tung, M.M. (2008). Particle 

swarm optimization applied to the design of water supply systems. 

Computers & Mathematics with Applications. 56(3), 769-776. https: 

//doi.org/10.2495/978-1-84564-664-6/05 

Nabinejad, S., Jamshid Mousavi, S. and Kim, J.H. (2017). Sustainable 

basin-scale water allocation with hydrologic state-dependent multi-

reservoir operation rules. Water Resources Management. 31, 3507-

3526. https://doi.org/10.1007/s11269-017-1681-y 

Nagesh Kumar, D. and Janga Reddy, M. (2007). Multipurpose reser- 

voir operation using particle swarm optimization. Journal of Water 

Resources Planning and Management. 133(3), 192-201. https://doi. 

org/1 0.1061/(ASCE)0733-9496(2007)133:3(192) 

Nandalal, K.D.W. and Bogardi, J.J. (2007). Dynamic Programming 

based Operation of Reservoirs: Applicability and Limits. Cambridge 

University Press, pp 1-130. http://dx.doi.org/10.1017/CBO9780511 

535710 

Qu, G.D. and Lou, Z.H. (2013). Application of particle swarm algo- 

rithm in the optimal allocation of regional water resources based on 

immune evolutionary algorithm. Journal of Shanghai Jiaotong Uni-

versity (Science). 18, 634-640. https://doi.org/10.1007/s12204-013-

1442-x 

Rani, D. and Srivastava, D.K. (2016). Optimal operation of Mula reser- 

voir with combined use of dynamic programming and genetic algo- 

rithm. Sustainable Water Resources Management. 2, 1-12. https:// 

doi.org /10.1007/s40899-015-0036-1 

Rao, S.S. (1984). Optimization: Theory and Applications. Wiley Eastern. 

pp 1-711. 

Reddy, M.J. and Kumar, D.N. (2006). Optimal reservoir operation using 

multi-objective evolutionary algorithm. Water Resources Management. 

20, 861-878. https://doi.org/10.1007/s11269-005-9011-1 

Roushangar, K., Nouri, A., Shahnazi, S. and Azamathulla, H.M. (2021). 

Towards design of compound channels with minimum overall cost 

through grey wolf optimization algorithm. Journal of Hydroinfor-

matics. 23(5), 985-999. https://doi.org/10.2166/hydro.2021.050 

Sahu, R.T., Verma, M.K. and Ahmad, I. (2022). Segmental variability 

of precipitation in the Mahanadi River basin from 1901 to 2017. 

Geocarto International. 37(27), 14877-14898. https://doi.org/10.10 

80/10106049.2022.2091163 

Sahu, R.T., Verma, S., Kumar, K., Verma, M.K. and Ahmad, I. (2022). 

May. Testing some grouping methods to achieve a low error quantile 

estimate for high resolution (0.25 × 0.25) precipitation data. Journal 

of Physics: Conference Series. 2273, 012017. https://doi.org/10.108 

8/1742-6596/2273/1/012017 

Sahu, R.T., Verma, S., Verma, M.K. and Ahmad, I. (2023). Characteri- 

zing spatiotemporal properties of precipitation in the middle Ma- 

hanadi subdivision, India during 1901-2017. Acta Geophysica. 1-16. 

https: //doi.org/10.1007/s11600-023-01085-6  

Sahu, R.T., Verma, M.K. and Ahmad, I. (2023). Impact of long-distance 

interaction indicator (monsoon indices) on spatio-temporal variabil- 

ity of precipitation over the Mahanadi River basin. Water Resources 

Research. 59(6), e2022WR033805. https://doi.org/10.1029/2022W 

R033805 

Sandoval-Solis, S., McKinney, D.C. and Loucks, D.P. (2011). Sustain- 

ability index for water resources planning and management. Journal 

of Water Resources Planning and Management. 137(5), 381-390. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134 

Sarker, I.H. (2021). Machine learning: Algorithms, real-world applica- 

tions and research directions. SN computer science. 2(3), 160. https: 

//doi.org/10.1007/s42979-021-00592-x 

Sengupta, S., Basak, S. and Peters, R.A. (2018). Particle Swarm Opti- 

mization: A survey of historical and recent developments with hy- 

bridization perspectives. Machine Learning and Knowledge Extrac- 

tion. 1(1), 157-191. https://doi.org/10.3390/make1010010 

Sharifi, M.R., Akbarifard, S., Qaderi, K. and Madadi, M.R. (2021). Com- 

parative analysis of some evolutionary-based models in optimiza- 

tion of dam reservoirs operation. Scientific Reports. 11(1), 15611. 

https://doi.org/10.1038/s41598-021-95159-4 

Shi, Y. and Eberhart, R.C. (1998). March. Parameter selection in parti- 

cle swarm optimization. International Conference on Evolutionary 



S. Verma et al. / Journal of Environmental Informatics Letters 10(2) 132-144 (2023) 

144 

 

Programming, Evolutionary Programming VII, San Diego, 591-600. 

Shi, Y. and Eberhart, R.C. (1999). Empirical study of particle swarm 

optimization. Proceedings of the 1999 Congress on Evolutionary 

Computation-CEC99, Washington, 3, 1945-1950. https://doi.org/1 

0.1109/CEC.1999.785511 
Singh, A. (2014). Optimization modelling for seawater intrusion man- 

agement. Journal of Hydrology. 508, 43-52. https://doi.org/10.1016 

/j.jhydrol.2013.10.042 

Sousa-Ferreira, I. and Sousa, D. (2017). A review of velocity-type PSO 
variants. Journal of Algorithms & Computational Technology. 11(1), 

23-30. https://doi.org/10.1177/1748301816665021 

Stretch, D. and Adeyemo, J. (2018). Review of hybrid evolutionary 

algorithms for optimizing a reservoir. South African Journal of Chem- 
ical Engineering. 25(1), 22-31. https://doi.org/10.1016/j.sajce.201 

7.11.004 

Sun, X.M., Luo, J.G. and Xie, J.C. (2018). Multi-objective optimiza- 

tion for reservoir operation considering water diversion and power 

generation objectives. Water. 10(11), 1540. https://doi.org/10.3390/ 
w10111540 

Sylla, C. (1995). A penalty-based optimization for reservoirs system 

management. Computers & Industrial engineering. 28(2), 409-422. 

https:// doi.org/10.1016/0360-8352(94)00038-O 
Tan, Y.G., Dong, Z.C., Xiong, C.S., Zhong, Z.Y. and Hou, L. (2019). 

An optimal allocation model for large complex water resources sys- 

tem considering water supply and ecological needs. Water. 11(4), 

843. https://doi.org/10.3390/w11040843 

Tayfur, G. (2017). Modern optimization methods in water resources 
planning, engineering and management. Water Resources Manage- 

ment. 31, 3205-3233. https://doi.org/10.1007/s11269-017-1694-6 

Techarungruengsakul, R., Ngamsert, R., Thongwan, T., Hormwichian, 

R., Kuntiyawichai, K., Ashrafi, S.M. and Kangrang, A. (2022). Op- 
timal choices in decision supporting system for network reservoir 

operation. Water. 14(24), 4090. https://doi.org/10.3390/w14244090 

Turner, S.W., Steyaert, J.C., Condon, L. and Voisin, N. (2021). Water 

storage and release policies for all large reservoirs of conterminous 
United States. Journal of Hydrology. 603, 126843. https://doi.org/1 

0.1016/j.jhydrol.2021.126843 

Verma, S., Prasad, A.D. and Verma, M.K. (2022b). Optimizing Multi-

reservoir Systems with the Aid of Genetic Algorithm: Mahanadi 

Reservoir Project Complex, Chhattisgarh. Applied Geography and 
Geoinformatics for Sustainable Development, Proceedings of ICGGS 

2022, Phuket, 35-49.  

Verma, S., Sahu, R., Prasad, A.D. and Verma, M.K. (2023). Reservoir 

operation optimization using ant colony optimization a case study 
of mahanadi reservoir project complex Chhattisgarh-India. Larhyss 

Journal. 20(1), 21-41.  

Verma, S., Sahu, R.T., Prasad, A.D. and Verma, M.K. (2022a). Devel- 

opment of an optimal operating policy of multi-reservoir systems in 

Mahanadi Reservoir Project Complex, Chhattisgarh. Journal of 
Physics: Conference Series. 2273, 012020. https://doi.org/10.1088 

/1742-6596/2273/1/012020 

Verma, S., Verma, M.K., Prasad, A.D., Mehta, D.J. and Islam, M.N. 

(2023). Modeling of uncertainty in the estimation of hydrograph 
components in conjunction with the SUFI-2 optimization algorithm 

by using multiple objective functions. Modeling Earth Systems and 

Environment. 1-19. https://doi.org/10.1007/s40808-023-01758-7 
Wan, F., Yuan, W.L. and Zhou, J. (2017). Derivation of tri-level pro- 

gramming model for multi-reservoir optimal operation in inter-basin 
transfer-diversion-supply project. Water Resources Management. 
31, 479-494. https://doi.org/10.1007/s11269-016-1540-2 

Wan, W.H., Guo, X.N., Lei, X.H., Jiang, Y.Z. and Wang, H. (2018). 

A novel optimization method for multi-reservoir operation policy 

derivation in complex inter-basin water transfer system. Water Re- 

sources Management. 32, 31-51. https://doi.org/10.1007/s11269-01 

7-1735-1 

Willmott, C.J. (1981). On the validation of models. Physical Geogra- 

phy. 2(2), 184-194. https://doi.org/10.1080/02723646.1981.106422 

13 

Wu, B.L., Hu, W., Hu, J.J. and Yen, G.G. (2019). Adaptive multiobjec- 

tive particle swarm optimization based on evolutionary state estima-

tion. IEEE Transactions on Cybernetics. 51(7), 3738-3751. https:// 

doi.org/10.1109/TCYB.2019.2949204 

Xu, Y.J., Liu, X., Cao, X., Huang, C.P., Liu, E.K., Qian, S., Liu, X.C., 

Wu, Y.J., Dong, F.L., Qiu, C.W., Qiu, J.J., Hua, K.Q., Su, W.T., 

Wu, J., Xu, H.Y., Han, Y., Fu, C.G., Yin, Z.G., Liu, M., Roepman, 

R., Dietmann, S., Virta, M., Kengara, F., Zhang, Z., Zhao, T.L., Dai, 

J., Yang, J.L., Lan, L., Luo, M., Liu, Z.F., An, T., Zhang, B., He, X., 

Cong, S., Liu, X.H., Zhang, W., Lewis, J.P., Tiedje, J.M., Wang, Q., 

An, Z.L., Wang, F., Zhang, L.B., Huang, T., Lu, C., Cai, Z.P., Wang, 

F. and Zhang, J.B. (2021). Artificial intelligence: A powerful 

paradigm for scientific research. The Innovation. 2(4). https://doi. 

org/10.1016/j.xinn.2021.100179 

Yang, G., Guo, S.L., Li, L.P., Hong, X.J. and Wang, L. (2016a). Multi-

objective operating rules for Danjiangkou reservoir under climate 

change. Water Resources Management. 30, 1183-1202. https://doi. 

org/10.1007/s11269-015-1220-7 

Yang, G., Guo, S.L., Liu, P., Li, L.P. and Liu, Z.J. (2016b). PA-DDS 

algorithm for multi-objective reservoir operation. Journal of Hy- 

draulic Engineering. 47(6), 789-797. https://doi.org/10.13243/j.cnki. 

slxb.20150773 

Yang, X.S. (2020). Nature-Inspired Optimization Algorithms. Aca- 

demic Press, pp 1-263. https://doi.org/10.1016/C2013-0-01368-0 

Yeh, W.W.G. (1985). Reservoir management and operations models: 

A state-of-the-art review. Water Resources Research. 21(12), 1797-

1818. https://doi.org/10.1029/WR021i012p01797 

Zeinalie, M., Bozorg-Haddad, O. and Azamathulla, H.M. (2021). Opti- 

mization in water resources management. Essential Tools for Water 

Resources Analysis, Planning, and Management. Springer, pp 33-

58. https://doi.org/10.1007/978-981-33-4295-8_2 

Zhang, J.W., Cai, X.M., Lei, X.H., Liu, P. and Wang, H. (2021). Real-

time reservoir flood control operation enhanced by data assimilation. 

Journal of Hydrology. 598, 126426. https://doi.org/10.1016/j.jhydr 

ol.2021.126426 

Zhang, J.W., Li, Z.J., Wang, X., Lei, X.H., Liu, P., Feng, M.Y., Khu, 

S.T. and Wang, H. (2019). A novel method for deriving reservoir op- 

erating rules based on flood classification-aggregation-decomposition. 

Journal of Hydrology. 568, 722-734. https://doi.org/10.1016/j.jhydr 

ol.2018.10.032 

Zhang, X.Q., Liu, P., Xu, C.Y., Gong, Y., Cheng, L. and He, S.K. 

(2019). Real-time reservoir flood control operation for cascade reser- 

voirs using a two-stage flood risk analysis method. Journal of Hy- 

drology. 577, 123954. https://doi.org/10.1016/j.jhydrol.2019.1239 

54 

Zhao, T. and Zhao, J., 2014. Improved multiple-objective dynamic 

programming model for reservoir operation optimization. Journal 

of Hydroinformatics, 16(5), 1142-1157. https://doi.org/10.2166/hyd 

ro.2014.004 

Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N. and Zhang, Q. 

(2011). Multiobjective evolutionary algorithms: A survey of the 

state of the art. Swarm and Evolutionary Computation. 1(1), 32-49. 

https://doi.org/10.1016/j.swevo.2011.03.001

 

 


