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ABSTRACT. “Real world” risk analysis in environmental contexts frequently requires the need to contrast numerous uncertain factors 

simultaneously and to communicate difficult-to-capture interactions. Monte Carlo simulation modelling of complex environmental sys-

tems is frequently employed to integrate uncertain inputs and to construct probability distributions of the resulting outputs. Visual ana-

lytics and data visualization can then be employed for the processing, analyzing, and communicating of the influence of any multi-

variable uncertainties on the system. The simulation decomposition (SimDec) analytical technique has recently been employed in the 

complex assessments of environmental systems. SimDec has proved to be beneficial in revealing interdependencies in complex models, 

lowering computational burdens, facilitating decision-maker perceptions, and especially, making analytical components visualizable. It 

has been demonstrated that many analytical findings would not have been revealed without the coloured visualizations provided  by 

SimDec. However, an ad hoc colouring scheme of the distribution output is neither sufficient nor capable of producing much of the key 

visualizable information requisite for an effective SimDec analysis. Instead, an approach that has recently been referred to as an intelli-

gent colouring has been proposed. This paper outlines, highlights, and demonstrates the importance of and best-practices in an intelligent 

colouring scheme needed for an effective SimDec analysis of complex environmental systems. 
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1. Introduction 

Environmental decision-making is an inherently compli-

cated process that frequently requires the integration of numer-

ous socio-economic, environmental, and political uncertainties 

into its process (Loughlin et al., 2001; Zechman and Ranjithan, 

2004; Janssen et al., 2010). While specific aspects may be clearly 

quantifiable, typical environmental problems also contain many 

components that cannot be directly incor-porated in the under-

lying decision models (Hipel and Ben-Haim, 1999; Mowrer, 

2000; De Kok and Wind, 2003; Brugnach et al., 2007; Matthies 

et al., 2007; Fuerst et al., 2010; Hipel and Walker, 2011; Cas-

telletti et al., 2012; Lund, 2012; Walker et al., 2012; Deviatkin 

et al., 2020). Such complexities are further compounded when 

stochastic uncertainties predominate (Baetz, 1990; Yeomans, 

2008; Gunalay et al., 2012; Farr et al., 2016; Han et al., 2017; 

Kozlova and Yeomans, 2019). 

Monte Carlo simulation has been employed in a variety of 

environmental situations in order to better capture these uncer- 

tainties (Openshaw and Whitehead, 1985; Ridlehoover, 2004; 

Byer and Yeomans, 2007; Byer et al., 2009; CEAA, 2011; 
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Vithayasrichareon and Macgill, 2012; Kim et al., 2013; Farr et 

al., 2016; Pianosi et al., 2016; Han et al., 2017). Simulation is 

used to reflect various potential system impacts based on the 

likelihood of certain events (Byer and Yeomans, 2007; Byer et 

al., 2009). An effective Monte Carlo analysis should incor- po-

rate not only the ranges of realistic possible outcome, but also 

the distributional nature of how the identified risks actually 

“behave” between identified extremes (CEAA, 2011; Kozlova 

and Yeomans, 2019). Although Monte Carlo simulation has 

been applied to wide spectrums of problems, the approach to 

its output analysis has remained comparatively static (Law 

and Kelton, 2000; Kozlova and Yeomans, 2022a, b). While 

simulation models enable a merger of the stochastic behaviours 

directly into the analysis process, they do not supply any pre- 

scriptive mechanism for determining actual system solutions 

(Kozlova and Yeomans, 2022b). Visual analytics involves some 

form of graphical representation of data to analyze, process, 

uncover, and communicate relationships embodied within the 

data. Typically, simulation outputs appear in distributional form 

and, therefore, visualization becomes the most important deci-

sion-support component (Byer et al., 2009). 

Simulation decomposition (SimDec) has been introduced 

as a Monte Carlo enhancement to extend data analysis by vis- 

ually revealing cause-effect relationships between combinations 

of input variables on the corresponding simulated outputs (Ko-  
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zlova and Yeomans, 2019; Kozlova and Yeomans, 2022b). Sim- 

Dec partitions Monte Carlo outputs into sub-distributions by 

pre-classifying the inputs into states, grouping these states into 

scenarios, and then determining which outputs arise from these 

scenarios (Kozlova and Yeomans, 2019, 2022b). SimDec re-

veals previously unrecognized connections between the inputs 

and the outputs by visually mapping the relative contributions 

from each scenario onto the output distribution (Kozlova and 

Yeomans, 2020). This visualization permits the consequences 

of different combinations of the states to become recognizable 

to decision-makers in a straightforward manner (Kozlova and 

Yeomans, 2021). As the states can reflect different degrees of 

risks, SimDec actually generates important actionable insights 

to support decision-making. It is these visual analytics profi-

ciencies that contribute substantial benefits to SimDec’s prac-

tical decision-support capabilities under “real world” circum-

stances. SimDec is completely generalizable to any Monte 

Carlo model with negligible additional computational overhead 

and, hence, can be readily used for decision-making in situa-

tions containing considerable stochasticity (Kozlova and Yeo-

mans, 2019). Given that SimDec is a relatively straightforward 

extension of Monte Carlo methods, the complexity of any un-

derlying models is not an impediment to its adoption. In fact, 

the more nonlinear and/or complex the underlying models are, 

the more comprehensive the contributed SimDec insights have 

tended to be (Kozlova and Yeomans, 2022a). 

The simplicity and intuitiveness of SimDec has also demon-

strated how to successfully bridge the ostensible global sensi-

tivity analysis gap existing in science and industry (Saltelli et 

al., 2008; Sobol and Kucherenko, 2009; Pianosi et al., 2016; 

Saltelli et al., 2019; Saltelli et al., 2020; Lo Piano and Benini, 

2022; Kozlova et al., 2023a, b, c). One of the key strengths of 

SimDec in comparison to other methods is that, by design, it 

produces an easily interpretable visual representation of the so-

lution without suppressing the complexities and uncertainties 

in the underlying problem. 

Ghaffarzadegan et al. (2011) have strongly advocated for 

the use of intuitive system dynamics models for policy-making 

and Monte Carlo simulation is a well-established technique for 

assessing system dynamics risks (Lehar, 2005; Huang et al., 

2009; Teply and Klinger, 2015). The visual analytics of Sim-

Dec have been employed in a variety of environmentally-re-

lated system dynamics settings. One of the first applications of 

SimDec involved a renewable energy policy analysis, in which 

the policy design features were analyzed in terms of the incen-

tives they created for renewable energy investors (Kozlova et 

al., 2017; Ruponen et al., 2021). In these applications, SimDec 

was able to produce important insights into how different fea-

tures of the policy interact with each other and how the invest-

ment project must be designed in order to achieve the maxi- 

mum benefit from the financial support under uncertain market 

conditions. Another policy application of SimDec (Kozlova and 

Yeomans, 2019) concerned the interaction of two mechanisms 

for carbon capture investment support: (i) direct subsidy and 

(ii) carbon market. It has been shown that their mutual intro- 

duction does not have an additive effect, but that one is likely 

to offset the other, thereby actually diminishing the effective-  

ness of the policy measures. Another environmental application 

of SimDec considered the carbon footprint of transportation 

pallets (Deviatkin et al., 2021). This study focused less on un-

certainty and more on the variability of pallet usage conditions 

within a certain country. In the case application, SimDec re-

vealed the driving factors behind the unit emissions and their 

peculiar interaction resulting from emission substitution com-

putations for incinerating pallets. This paradox was actually 

shown to produce ill-designed environmental incentives for the 

companies. Electrification of regional aviation was analyzed 

with SimDec through the lens of increased flying range of elec-

tric aircraft as a function of improved battery capacity and mo-

tor power (Kozlova et al., 2021). As with the previous case (De-

viatkin et al., 2021), a critical interaction was revealed via the 

SimDec analysis. Namely, investing in electric motor power 

development would not prove sensible with the existing levels 

of battery capacity, but would produce substantial benefits 

should the capacity be significantly improved. SimDec has also 

been applied to the sustainability of urban development (Yeo-

mans and Kozlova, 2023), the uncertainty in geological sys-

tems (Kozlova and Yeomans, 2022b), and the functioning of 

ecosystems (Kozlova and Yeomans, 2022a). In all of these ap-

plications, the analysis revealed critical nonlinear behaviours 

and interactions. 

Saltelli (2023) has recently referred to SimDec as an “in-

telligent colouring” approach due to its power to visually con-

vey the sensitivity of any output-to-input changes in conjunc-

tion with its capabilities for uncovering various complicated in-

teractions that are present within a model. However, while not 

inherently “incorrect” from an analytical perspective, some ap-

plications have neglected certain requisite “intelligent colour-

ing” components in the decomposition, thereby suppressing 

several major information benefits of the methodology (Liu et 

al., 2022; Raul et al., 2022). In order to illustrate the relative 

deficiencies of discounting such best-practice visualization 

recommendations, the simple model of Liu et al. (2022) is de-

composed and the analytical contributions of SimDec with and 

without intelligent colouring are compared. Consequently, the 

chief goal of this particular study is to demonstrate and stress 

the efficacy of ensuring the actual application of an intelligent 

colouring approach to SimDec in order to effectively advance 

its numerous visual analytics contributions to environmental 

decision-making. 

2. Simulation Decomposition 

As outlined in the introduction, SimDec provides an inno-

vative, visual analytics approach to enhance Monte Carlo anal-

ysis by detecting previously concealed relationships and inter-

actions inherent within the studied system (Kozlova and Yeo- 

poses the simulated outputs by clustering selected inputs into 

states, creating a collectively exhaustive list of the combina- 

tions of these states, and then mapping the resulting state parti- 

tions onto the output distribution (Kozlova and Yeomans, 2019, 

2022b; Deviatkin et al., 2021). Upon termination of the algo-

rithm, one can observe the overall output distribution, as in clas- 

sical Monte Carlo simulation, in conjunction with the simulta- 
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Figure 1. Schematic representation of the simulation decomposition approach adapted and modified from Kozlova et al. (2023c). 

 

neous projections of the various input variable partitions onto 

this distribution (Kozlova and Yeomans, 2021, 2022b). Any 

need for multiple simulation runs is eliminated by noting the 

input variable values that generated each output during the sin-

gle simulation run and by then creating the partitions based on 

the input variable states. Consequently, the additional compu-

tational overhead requirements of SimDec are insignificant (Ko- 

zlova and Yeomans, 2021). 

In order to ensure that the colouring system implemented 

can be considered “intelligent”, however, the states must be dis-

played by employing different colouring gradations of primary 

colours during the visual analytics stage (Saltelli, 2023). In par-

ticular, the variable partitions designated as most influential (or 

of most interest) need to be allocated dissimilar base colour 

schemes. The influential variables can be directly selected based 

on user preferences or determined via the calculation of Shap-

ley values, Sobol indices, or other forms of sensitivity indices 

(Shapley et al., 1953; Cukier et al., 1973; Sobol, 1993; Sobol 

and Saltelli, 1995; Homma and Saltelli, 1996; Kozlova et al., 

2023a). All remaining states in the decomposition (those con-

sidered less influential or of lesser interest) must be colour-

coded according to shading gradations of this basic colour (e.g., 

darkest-to-lightest) to facilitate consistency in prevailing hu-

man perception and also to preserve visual acuity (Kozlova and 

Yeomans, 2020, 2022b). By visually displaying segmented mul-

tivariable groups as partitions of the output variable, SimDec 

can intuitively expose various interactions and nonlinearities 

previously concealed within the model variables (Kozlova et 

al., 2023a). This exposition frequently leads to the detection of 

unforeseen relationships (Kozlova and Yeomans, 2020, 2022b). 

Computational codes for the SimDec algorithm are available 

in several different programming languages on the simulation 

decomposition GitHub page (Kozlova et al., 2023b). The de- 

composition process for the SimDec algorithm is as follows: 

Step 1: Define the importance of the input variables in the 

model. This can be done by either computing global sensitivity 

indices [the simple binning approach is recommended (Ko- 

zlova et al. (2023a)] or by iterative visual examination of the 

effect of each input variable. Appropriate visualization types 

would be scattered plots or single-variable SimDec. 

Step 2: Select input variables for decomposition based upon 

how much they influence the output. The appropriate selection 

contains only the most important input variables in the order of 

their importance. 

Step 3: Break up each selected variable into a set of states 

(for example, low-medium-high or optimistic-expected-pessi-

mistic, etc.). The default formation of numeric boundaries en-

sures an equal number of datapoints in each state. Also, the 

state boundaries could be custom-defined to satisfy the peculi-

arities of a certain decision situation. The appropriate number 

of states for continuous numeric variables is (i) two if three or 

more input variables are chosen, (ii) three states for two input 

variables, and (iii) up to five for categorical variables where 

each category becomes a state. 

Step 4: Form scenarios by creating an exhaustive list of the 

combinations of the states of the input variables. The total num-

ber of these scenarios is, thus, a combinatorial function of the 

number of states for each variable. For example, for C possess- 

ing three states [0, 33], (33, 67], and (67, 100] and B two states 

{‘True’, ‘False’} we have six possible variable-state combina-

tions. 

Step 5: Record the values for each input variable while run- 

ning the Monte Carlo Simulation. Define each scenario that 

matches each outcome based on the variable-state combina- 

tions. The correct sub-distribution for each iteration is achieved 

by mapping the randomly generated values of each individual 

input to their corresponding states and then mapping these states 

into the appropriate multivariable scenario. 

Step 6: Plot a stacked histogram, where the scenarios form 

the series of the chart, and colour-code the figure based upon 

the identified states created by the partition combinations. The 

colour-coding should follow the principle of assigning the main 

distinct colour to the states of the most influential input variable 
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Figure 2. Simulation decomposition of the model problem (1) by Liu et al. (2022). 

 

entering the decomposition first, and the shades of the main 

colours to the further subdivisions. Also, calculate the desired 

summary statistics for the full distribution and each group. For 

example, probability, weighted mean, standard deviation, min-

imum, and maximum. A detailed schematic representation of 

the SimDec algorithm appears in Figure 1. The SimDec algo-

rithm has been implemented in several open-source code pack-

ages, including Python, R, Julia, and Matlab (Kozlova et al., 

2023b). 

3. Example Decomposition 

Liu et al. (2022) performed a SimDec analysis of the agri-

cultural food-water-energy system in the United States. In ad-

dition to decomposing their two large, “real world” environ-

mental cases, the authors illustrated their approach to decom-

position colouring through the example model: 

 
2

1 2 3y x x x= +  (1) 

 

in which the numeric assumptions of input variables are pre-

sented in Table 1. 

 

Table 1. Numeric Assumptions of Input Variables 

Input Variables Distribution 

x1 U (1, 1000) 

x2 U (1, 100) 

x3 U (1, 10) 

 

The simulated output distribution was constructed based 

on 106 iterations of the model. The decomposition was con-

ducted using all three inputs, x1, x2, and x3 (stated in order of 

their decomposition) by partitioning the numeric range of each 

input into two states of equal-sized sub-ranges. The correspond-

ing decomposition partitioned the outputs into 8 (2 × 2 × 2) 

variable-state combinations [referred to “Cases” in Liu et al. 

(2022)] as shown in Figure 2. 

Figure 2 had been constructed correctly from a technical 

decomposition perspective, and it guided the authors to the cor-

rect conclusion that x3 was the most significant input. However, 

the graph itself provides very limited interpretability and read-

ability due to the following shortcomings: 

(1) The colour-coding does not follow an intelligent col-

ouring scheme that initially separates the most influential in-

put’s states into distinctive main colours and assigns gradations 

of these colours to respective scenarios contained within them. 

Assigning a distinct base colour (together with the subsequent 

colour gradients) provides a means to visually project the im-

pacts from input volatilities onto the output.  

(2) The order of decomposition does not start with the 

most influential variable. This can lead to a misleading percep-

tion of the figure and, of much greater concern, can confound 

key interactions so much that they may remain essentially un-

detectable. 

(3) The legend does not provide any attribution of input 

variables to specific scenarios. 

Consequently, it is impossible to interpret which scenario 

maps onto which input states on the figure. This omission com-

pletely removes any ability to readily construe key insights from 

this single graphical visualization. 

4. Best-Practice Decomposition and Its Variations 

This section first replicates the data-generating process of 

Liu et al. (2022) and then visually contrasts the results from the 

other decompositions including (i) a decomposition using all of 

the input variables, (ii) a decomposition based upon a best-prac- 
tice ordering of the inputs, (iii) a decomposition without the 

best ordering of the inputs, and (iv) a decomposition of each 

individual input variable.  

Cases

Case1

Case1

Case1

Case1

Case1

Case1

Case1

Case1
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Figure 3. Reproduction of the simulation data of Liu et al. (2022). 

 

 
 

Figure 4. Decomposition on all input variables. 

 

4.1. Replicating the Data Generating Process 

This initial simulation experiment could be viewed as a 

general assessment of the dynamics of the model. The basic 

Monte Carlo simulation should produce an output distribution 

possessing an overall shape congruent to that of Figure 2 (but 

displayed using only a single colour). 

To replicate the data from Liu et al. (2022), 106 observa-

tions of each input are randomly generated from the respective 

F
re
q
u
e
n
c
y

Output
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uniform distributions x1 ~ U (1,1000), x2 ~ U (1,100) and x3 ~ 

U (1,10), Table 1, using Latin Hypercube Sampling (McKay et 

al., 1979). These input variables are used to determine corre-

sponding output values calculated using equation (1). The com-

plete sample data with its output distribution appear in Figure 

3. As expected, the shape of the output distribution in Figure 3 

directly corresponds to the shape of Figure 2. 

 

4.2. Decomposition by All Inputs (Suboptimal) 

This sub-section conducts a decomposition on all inputs 

with the ordering based upon perceived level of influence. In 

any SimDec analysis, the overall distribution is broken down 

(or decomposed) into non-overlapping scenarios of input vari-

able combinations that are stacked on top of each other in the 

figure. Altogether, all possible combinations of the state settings 

for the inputs form separate scenarios. The probability distribu-

tion of the model output is partitioned using these scenarios and 

judiciously colour-coded. The colouring logic is important to 

facilitate the overall interpretability of the visual perceptions. 

The states of the most influential input variables assume dis-

tinct main colours, and each of these main colours is then sub-

shaded to further highlight the partitions. The visualized inter-

pretation of the SimDec breakdown into attributes of the entire 

output dataset can be clarified using the histogram’s legend. 

The legend assigns colour-shaded gradations to specific state 

combinations of the input variables, while also identifying each 

combination by assigning corresponding scenario indices to 

them. 

Figure 4 decomposes the model using all three inputs with 

the variable decomposition ordering of x3, x2, x1. Each variable 

is partitioned into low and high states. Specifically, with three 

variables each partitioned into two states, there are eight possi-

ble combinations of the input variable states in total. Each of 

these eight combinations is considered a scenario. The base col-

our scheme assigns blue to the low state of x3 and yellow to the 

high state. Furthermore, to convey additional analytical infor-

mation, the (i) minimum, (ii) mean, and (iii) maximum values 

of the output are computed for each scenario. Clearly, the min-

imum and maximum values correspond to the extreme edges of 

each scenario’s coloured distribution on the horizontal axis 

within the histogram and provide a numerically convenient, an- 

cillary interpretation of the figure. 

Because of the visualization from the colouring scheme, 

the influence of x3 on the output becomes immediately appar-

ent. The darker blue colour gradations (which correspond to the 

low state of x3) are all clustered on the leftmost portion of the 

distribution, while the yellow shades (representing the high state 

of x3) are on the right with a long-tail stretching into the high 

output value region of the distribution. To visually determine 

influence from the remaining variables, one can examine the 

gradations of colour within each of the blue and yellow por- 

tions noting that the darker hues correspond to lower-valued 

states of x1 and x2. If x1 and x2 had little-to-no effect, then the 

distributions of the yellows and blues would appear “uniformly” 

distributed, with equal portions of the blue/yellow hues appear- 

ing stacked on top of each other. However, as the darker col- 

oured (low state) hues are clustered toward the leftmost por-

tions of both the blue and yellow regions with the lighter (high 

state) gradations to the right together with a relatively clear dif-

ferentiation between the differently shaded colour blocks mov-

ing left-to-right the visualization further reveals that there is 

also an influential relationship between the output values and 

x1 and/or x2. 

 

4.3. Best-Practice SimDec 

Intuitively, by examining Equation (1), it can be seen that 

x1 only acts like an intercept by shifting the output value in a 

type of levelling effect on the output. While the intelligent col-

ouring shown in Figure 4 maps each scenario into its respective 

region, any interaction effect between x3 and x2 is not easily dis-

cernible due to the inclusion of x1. Figure 5 provides a best-

practices application of SimDec, in which only the most influ-

ential inputs are x3 and x2 are used for decomposition, with x1 

omitted from the scenario formation. 

The best ordering for decomposition is x3 followed by x2, 

with each of the variables shown after being partitioned into the 

three states: low, medium, and high. There are 9 multivariate 

scenario combinations, with the base colours blue, yellow, and 

green assigned, respectively, to the low, medium, and high 

states of the primary variable x3. The colour gradations for these 

base colours are adjusted to their respective shades reflecting 

each state of variable x2. 

In the resulting plot, the visualization advantages from us-

ing intelligent colouring become readily apparent. Firstly, the 

scenario data in the legend table can be clearly mapped to the 

stacked histogram making the plot easily interpretable even 

from a cursory glance. The distinct left-to-right blocks of blue 

/yellow/green regions clearly indicate the influence of the low 

/medium/high states of x3 on the output. More importantly, 

however, the interaction effects between x2 and x3 can be visu-

ally deduced because, within each primary colour block, a dis-

tinct left-to-right pattern of darkest-to-lightest colour-gradation 

differentiation is clearly evident. Namely, it becomes readily 

apparent that the influence of x2 increases as the value of x3 in-

creases [which is evident upon examination of the variable 

structure in Equation (1)]. Moreover, leaving out irrelevant var-

iables from the decomposition has allowed one to more easily 

discern the various important underlying effects, which rein-

forces the importance of input variable ordering in the analysis. 

Visually, this is observable by the fact that the shades of green 

stretch further along the right tail of the distribution compared 

to the shades of yellow and blue.  

In direct contrast to the visualizations from Figure 5, the 

interaction effect is not clearly discernible in the colours of Fig- 

ure 2 because (i) Liu et al. (2022) have not employed intelli-

gentc olouring, (ii) the number and order of variables used for 

the decomposition are not ideal, and (iii) the absence of a well-

constructed scenario legend. 

 

4.4. Decomposition with a Suboptimal Ordering 

For illustrative purposes, the following case again contains  
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Figure 5. The best-practice SimDec: decomposition by the most important variables in the order of their importance. 

 

 
 

Figure 6. Decomposition with a sub-optimal order of input variables that does not follow their sensitivity indices. 
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Figure 7. Decompositions by single input variable (a) SimDec plot of x1; (b) SimDec plot of x2; (c) SimDec plot of x3 (note: the 

more the sub-distributions overlap, the less impact the input variable has on the output). 

 

all inputs, but does not assign any importance to variable order-

ing in the decomposition. Each variable is decomposed into two 

states which creates 8 scenario combinations. Figure 6 clearly 

highlights a significant horizontal overlap of the colours. Alt-

hough intelligent colouring maps the information from the sce-

nario legend onto its respective region within the distribution, 

both the first-order effect of x3 and the interactions between x3 

and x2 become much harder to differentiate due to the order of 

decomposition employed. Consequently, in order to convey the 

most information, the decomposition ordering should start with 

the most influential variable whenever possible to prevent key 

interactions from becoming visually confounded within the fig-

ure.  

 

4.5. Examining Individual Inputs with SimDec 

The relative influence of each input variable on the output 

distribution can also be examined via decomposition. Figure 7 

decomposes each variable into three states to highlight Sim-

Dec’s relative abilities to assess the influence of individual in- 

puts. The fact that x1 only has a levelling effect is clearly evi- 

dent not only from the legend table (note how the summary sta- 

tistics of how the output changes with each state of x1) but also 

from the layering of the colours on top of each other the low, 

medium, and high states cover the entire range of the distribu-

tion essentially exhibiting the same likelihoods, throughout. 

Namely, it is readily observable that there is not a strongly in- 

fluential impact of this individual variable on the overall out- 

put. Furthermore, an equivalent lack-of-influence interpreta- 

tion also applies to the individual decompositions of x2 and x3, 

respectively. The major analytical contribution of SimDec 

arises from the identification of the strong interaction effects 

detected between x2 and x3, as described in the earlier sections. 

5. Conclusions 

This paper has highlighted several differences between the 

best-practice approaches of the intelligent colouring analyses 

of SimDec to somewhat less meticulous applications of the col-

ouring concept. Proper visual insights and interaction effects 

can only be achieved when the following elements of the Sim-

Dec algorithm have been incorporated into the analysis: (i) an 

appropriate assignment and gradation of colouring logic has 

been employed, (ii) an appropriate ordering of influential in-

puts has been adopted in the decomposition, and (iii) non-con-

tributory input variables have been removed. 

For visualization purposes, it is imperative that the scenar-

ios of the states for the most influential variables be assigned 

distinct primary colours with all remaining states receiving gra- 

dations of these. SimDec has demonstrated that many analyti- 

cal discoveries cannot be accomplished without appropriate 

colour scheme visualizations. This requires the best-practice 

adoption of the methods that have now become more broadly 

referred to as “intelligent colouring”. Conversely, it is clear that 

an ad hoc colouring approach can prove neither sufficient nor 

（a）

（b）

（c）
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capable of producing the key visualizable information requisite 

for an effective analysis. As demonstrated in this paper, varia-

ble “pruning” can also become a crucial factor in narrowing 

down and identifying important interactions. 

The illustrative example used in this paper is a simple 

three-variable model that includes addition, multiplication, and 

power operations, components that are essential for any envi-

ronmental system. And yet even with this simple model, it was 

shown how critical it is to follow the algorithmic colouring pro-

cedure to ensure the optimality of the information representa-

tion and to provide correct visual insights. This colouring is es-

pecially critical for systems that possess heterogeneous behav-

iour which are characteristic components inherent in most en-

vironmental models (Kozlova et al., 2023c). 

Consequently, this paper has outlined, highlighted, and 

demonstrated why the specific application of many of the im-

portant best-practice intelligent colouring schemes would be-

come absolutely essential in order to conduct a complete and 

effective SimDec analysis of more complex environmental sys-

tems. Future avenues related to SimDec research to environmen-

tal applications would include: (i) Designing an approach for 

using SimDec to help inform surrogate model building for oth-

erwise too computationally heavy environmental models; (ii) 

Further developing the sensitivity indices computation algo-

rithm employed behind the SimDec procedure; (iii) Utilizing 

SimDec’s ability to incorporate dependent data into the design 

procedures for analyzing the model effects of aggregate varia-

bles (e.g., stages of LCA instead of individual inputs); (iv) Delv-

ing deeper into a computational world that combines nonlinear 

interactions and correlations within environmental models, the 

nature of which can already be conveniently exposed with Sim-

Dec. 
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