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ABSTRACT. The catastrophic flood of the Bow River in 2013 had a significant impact on Calgary, Canada, and citizen's lives, showing 

the need for early warning systems and preparedness ahead-of-time. AI-based models that integrate climate and historical flow data, 

using the Prophet algorithm as applied in this research, demonstrate high accuracy in predictions for 15-, 10-, 5-day-ahead and 24-hour-

ahead during extreme events in the Bow River, Banff. The predictions 5-day-ahead and 24-hour-ahead are 96.1% and 98.8% accurate, 

respectively, to the actual event on June 21st, 2013, as a particular case study. The Prophet algorithm shows significant benefits that 

maintain consistent nonlinear trends with daily, and weekly seasonality. This model also works with diverse components such as trends 

with high accuracy and greatly improves results using, for example, the GMDH algorithm. A comparison of evaluation metrics for the 

GMDH and Prophet models indicates that the GMDH model shows R², RMSE, and MAE values of 0.64, 46.8, and 6.70 respectively, 

with a disparity in accuracy and an absence of trend between the target and the dependent variables. The GMDH model performs well 

with a timestep of 17 h, but the accuracy significantly decreases with a timestep prediction of 120 h or 5-day-ahead, rendering the model's 

utility minimal. In contrast, the Prophet model features better prediction of time series data with higher evaluation metrics of R², RMSE, 

and MAE values of 0.97, 41.7, and 3.19, respectively. 
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1. Introduction 

Floods have been the largest damage hazard of worldwide 

natural disasters. Research showing natural disasters statistics 

around the world reported that floods that occurred between 

2000 and 2019 have the highest number of events (3,254 events), 

and people affected (2.4 billion people) (UNISDR-CRED 2020). 

The year 2022 witnessed devastating floods in Pakistan that im- 

pacted 33 million individuals, resulting in 1,739 fatalities and 

a staggering economic loss of US$ 15 billion. Floods also struck 

Bangladesh (7.2 million people affected), India (2,035 deaths, 

US$ 4.2 billion of economic loss), and China (US$ 5 billion of 

economic loss), etc. (EM-DAT, 2023). 

Further, floods in Canada are the most common natural 

hazard according to the Canadian Disaster Database (Public 

Safety Canada, 2022). Figure 1 indicates that 336 flood disasters 

have occurred in Canada between the years 1900 and 2020, 

about twice as many as the next most common disaster, wildfire 

risk. Based on reports from the Alberta Treasury Board and Fi- 

nance (2013) and Environment Canada (2014), the devastating 

floods that occurred in the Calgary area in June 2013 resulted 

in the destruction of ~ 4,000 businesses, 13,500 houses, forced 

about 100,000 people to evacuate, and resulted in five fatalities. 

The damages from this flood were at least ~ CAD$6 billion, of 
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which ~ $2 billion represented insured losses. 

1.1. Literature Review 

Since the frequency and severity of floods are expected to 

increase under climate change, especially in snowmelt-domi-

nated areas, early warning systems are needed to support deci- 

sion-making (Ebtejah and Bonakdari, 2022). Accurate and time- 

ly warning systems are key for mitigating the damages and loss 

of life from floods and hence, options to improve streamflow 

forecasting are of great importance (Xu et al., 2013) and can be 

broadly classified as process-driven and data-driven models 

(Wang, 2023). 

Process-driven models are modeling approaches that are 

based on physical principles and typically involve a mathemat- 

ical framework that considers the characteristics of the water- 

shed and can play a crucial role in determining the streamflow 

process. (Wang, 2006). However, flood forecasts can also be 

both challenging to calibrate and computationally intensive (Le- 

andro et al., 2009), often requiring lengthy running times 

(Lhomme et al., 2006) and input data may be unavailable (Chau, 

et al., 2005). Consequently, there is growing interest in cutting-

edge data-driven models based on statistical relationships ob- 

served within hydrological variables such as streamflow (Sam- 

sudin et al., 2011). 

AI-based and ML techniques, shown in Table 1, have been 

used by scholars for simulating different hydrological variables, 

including: rainfall, runoff, water level, river flow, and extreme 

floods. Instead of necessitating knowledge of specific assump- 
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tions to account for all hydro-geomorphological datasets asso- 

ciated with the watershed, these data-driven approaches “learn” 

from available data to detect relationships between them and to 

predict or recreate the outcome based on the recognized rela- 

tionships (Hauswirth et al., 2023). 

 

 
 

Figure 1. Natural Disaster Occurrences in Canada during 1900 

to 2020 (Data were obtained from the Canadian Disaster 

Database). 

 

In general, authors have found that deep machine learning 

techniques such as Artificial Neural Network (ANN), Long 

Short-Term Memory (LSTM), Support Vector Machine (SVM), 

achieve higher accuracies if compared to mathematical model 

techniques; however, some of them struggle with reconstruct- 

ing trends and seasonality-based gaps to forecast stochastic 

hydrological processes such as daily precipitation, daily stream- 

flow, or daily groundwater level. Other methods mentioned 

above, such as ANN and hybrid models, possess a complex ar- 

chitecture with several hidden layers and a few neurons in the 

input layer for non-expert stakeholders (Zhang et al., 2018).  

A traditional machine learning model designed to handle 

time series with seasonal effects and trends, may be more suit- 

able for flood forecasting tasks (Fronzi et al., 2024). For this 

reason, there is a crucial need for a fast, accurate, and tunable 

forecasting procedure that works best with time series with 

strong seasonal effects due to the oscillation of flows during the 

hydrologic years. Prophet is an open-source machine learning 

model specifically designed for time series forecasting, with a 

particular emphasis on capturing seasonality and trends (Taylor 

and Letham, 2018). Prophet is robust in automatically handling 

missing data and outliers, is flexible in incorporating domain 

knowledge, and can capture seasonality and holiday effects 

with simplicity. 

1.2. Advantages and Disadvantages of Existing Machine 

Learning Models 

Machine learning models, such as ANN, SVM, Random 

Forests (RFs), and Gradient Boosting Machines (GBMs), pos- 

sess various advantages and disadvantages in flood forecasting 

and other time series prediction tasks. ANNs are highly effect- 

tive at modeling complex, nonlinear relationships in data, which 

makes them suitable for hydrological forecasting (Mosavi et al., 

2018); however, they require large datasets for training and are 

prone to overfitting, especially when the data is noisy or limited 

(Kharroubi et al., 2016). SVMs excel in handling high-dimen- 

sional data and are robust against overfitting, making them useful 

for classification and regression tasks (Hamidouche et al., 2019). 

Nonetheless, SVMs can be computationally intensive and re- 

quire careful parameter tuning, which can be time-consuming 

(Riad et al., 2004). RFs are known for their high accuracy and 

ability to handle large datasets with numerous features and are 

less prone to overfitting than individual decision trees (Dimopoulos 

et al., 1996) but the interpretability of RFs can be challenging, 

and they require substantial computational resources (Munji et al., 

2013). GBMs, including XGBoost, offer robust performance 

and accuracy in regression and classifycation tasks, but they are 

prone to overfitting if not properly regularized and can be com- 

putationally expensive (Njoya et al., 2020). Overall, while these 

models provide powerful tools for forecasting, their complexity, 

computational demands, and potential for overfitting present 

significant challenges that must be managed to achieve optimal 

performance. 

1.3. Shortcomings in Current Research 

Despite the advances in ML models for flood forecasting, 

several shortcomings remain. Many models require extensive 

data preprocessing and are sensitive to missing values and out- 

liers. The computational complexity of these model’s can be pro- 

hibitive, especially for real-time applications. Additionally, the 

interpretability of complex models such as ANNs and RFs poses 

challenges for their adoption in operational forecasting systems 

(Schulze et al., 2023). 

1.4. Strengths of the Prophet Algorithm 

The Prophet algorithm, developed by Taylor and Letham 

(2018), excels in time series forecasting due to its robustness to 

missing data and outliers, which minimizes the need for exten- 

sive data preprocessing. It is highly scalable, handling large 

datasets efficiently, making it suitable for real-time applications. 

Improving predictions using nonlinear regression models, par- 

ticularly with outlier input data, is critical in achieving accurate 

streamflow forecasting (Hsieh, 2023). The model’s additive 

framework, which decomposes time series data into trend and 

seasonality effects, enhances interpretability and simplifies the 

modeling process. Moreover, Prophet’s user-friendliness and 

minimal requirement for parameter tuning make it accessible 

to users with varying levels of expertise. This flexibility allows 

for the incorporation of various seasonality, making it applica- 

ble to a wide range of forecasting problems, including hydro-

meteorological applications. 

1.5. Problems Addressed by Prophet 

Prophet is particularly well-suited for hydrometeorolog- 

ical forecasting due to its ability to handle irregular time series 

data and integrate diverse data sources. Machine learning has 

shown potential in enhancing flood resilience, as demonstrated 

in its application to coastal areas like Morocco, which aligns 

with the use of the Prophet model for similar purposes (Satour 

et al., 2023). In this study, we leverage Prophet to forecast river
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Table 1. Examples of Data-Driven Hydrological Forecasting Using Individual and Hybrid Machine Learning Models 

Model Type Previous Studies 

Time Series Model An autoregressive integrated moving average (ARIMA) model simulates the daily maximum streamflow from 

three-gauge stations, for example, the case of Cekerek Stream in Turkey, where Yurekli (2004) simulated daily 

maximum streamflow. Meanwhile, Noakes et al. (1985) conducted a study to assess the predictive capabilities 

of seasonal ARIMA, to predict monthly river flows across thirty rivers in North and South America, both auto-

regressive moving average (ARMA) and auto-regressive (AR) models are utilized. 

Artificial Neural Network 

(ANN) 

Freiwan and Cigizoglu (2005) utilized an ANN approach in predicting the monthly precipitation in Jordan. 

Likewise, ANNs have been applied to predict the water levels in the unbounded aquifer located in the Lagoon 

of Venice, Italy., and the water levels in Lake Erie, Canada, with a 1-day lead time, using different ANN 

structures such as Multilayer Perceptron, M5P model tree, random forest, and k-nearest neighbors (Wang and 

Wang, 2020).   

It has been suggested by various studies that the use of a singular ANN model may not be sufficient in 

accurately predicting intricate issues, such as the processes of rainfall-runoff. For example, Tiwari and 

Adamowski (2017) combined the wavelet, bootstrap, and neural network (WBNN) models in a hybrid model to 

predict Calgary's daily urban water requirements. 

Adaptive Neural-Based 

Fuzzy Inference System 

(ANFIS) 

In the prediction of daily flow in the Karuvannur River Basin (India), the ANFIS model has demonstrated 

superior accuracy when compared to both the ANN and MNLR models. The application of ANN and MNLR 

models, along with ANFIS, have been instrumental in forecasting daily flow in the basin. (Anusree 2016). 

Similarly, Belvederesi et al. (2020) reported high accuracy using sequential ANFIS to predict flows along the 

Athabasca River in Alberta (Canada) with six-day forecast.   

Support Vector Machine 

(SVM) and Least Squares 

Support Vector Machines 

(LSSVM) 

SVMs, as described by Vapnik (1995), have found applications in various domains, such as hydrological and 

water resources planning (Wang et al., 2009; Asefa et al., 2006), for analyzing time series data. To address the 

cost aspect, Suykens and Vandewalle (1999) proposed a more affordable alternative called LSSVM, which is 

essentially a modified version of SVM. LSSVM offers a significant advantage over SVM as it tackles 

regression problems by employing a set of linear equations rather than quadratic programming. 

Group Method of Data 

Handling (GMDH) 

This model type was first developed by Ivakhnenko (1968). In their study, Samsudin et al. (2011) examined the 

application of a hybrid forecasting model to analyze monthly flow time series in various rivers of Malaysia. 

The researchers compared the performance of GMDH and LSSVM models for training and testing purposes. 

This model type was proposed to develop a time series prediction model within the Bow River in Calgary 

(Elkurdy et al., 2022). The R2, RMSE, and MAE values for the model's ability to forecast river discharge one 

day in advance were 0.64, 46.88, and 6.70, respectively. 

Regression Models Veiga et al. (2014) used historic daily river flow values in a multilinear regression model (MLR), from 

upstream stations (Banff and Seebe) to forecast the flows at Calgary, having an R2 of 0.93. 

In the study conducted by Sehgal et al. (2014), a conventional MLR approach was employed to predict the 

daily flow in a delta region of the Mahanadi River basin in India. The resulting MLR model exhibited a 

relatively modest R2 value of 0.671 when forecasting at a 2-day lead time., whereas the wavelet bootstrap–

multiple linear regression (WBMLR) obtained R2 = 0.984. 

Prophet Prophet, an open-source time series forecasting library for business purposes, was developed by Taylor and 

Letham (2018) using Python and R. 

Only a very few studies have applied Prophet model for hydro-meteorological applications including 

Papacharalampous and Tyralis (2018), Papacharalampous et al. (2018a), two of which are pre-prints, not 

refereed papers. 

flows in the Bow River Basin, incorporating both rainfall and 

snow data. Our approach aims to improve the accuracy and reli- 

ability of flood forecasts, addressing the limitations of existing 

ML models. 

By integrating a comprehensive dataset and leveraging the 

strengths of the Prophet algorithm, this research contributes to 

the development of robust and efficient flood forecasting sys- 

tems. The inclusion of diverse data sources, along with ontology-

based approaches in AI, highlights the evolving role of ad- 

vanced AI applications in hydrology (Baydaroğlu et al., 2023). 

This work not only enhances the predictive performance but 

also provides valuable insights for flood risk management and 

mitigation. 

1.6. Objectives of This Study 

As climate change is altering flood occurrence in Canada 

(Buttle et al., 2016), there is a strong need to adapt flood fore- 

casting systems to increase community resilience and reduce 

economic losses. In cold regions of Canada, challenges are that 

flood forecasting systems typically rely on rainfall-runoff mod- 

els, which may not dedicate sufficient attention to all the cold 

region hydrological processes, and hydrometeorological obser- 

vations are sparse or nonexistent. Machine learning methods 

only require historical values of the hydrological parameter 

from a basin and use a self-learning function to complete flood 

forecasting, preventing a complex modeling process. 

Only a few studies have addressed different ML methods 

for predicting flooding events prior to its occurrence, in Cana- 

dian river basins (e.g., Veiga et al., 2015; Walton et al., 2019; 

Belvederesi et al., 2020; Elkurdy et al., 2022; Ebtejah and 

Bonakdari, 2022; de Oliveira et al., 2023). Regarding Prophet, 

researchers have tested it for groundwater level estimation 
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(Aguilera et al., 2019; Zarinmehr et al., 2022), precipitation 

prediction (Galdelli et al., 2023) and forecasting of monthly 

streamflow (Papacharalampous and Tyralis, 2018). In these 

studies, Prophet performed well compared with other univari- 

ate time series methods such as ARIMA (Aguilera et al., 2019). 

However, no research has been identified wherein Prophet has 

been successfully utilized for flood forecasting, specifically for 

predicting flows over a series of timeframes that would be use- 

ful in-situ.  

This paper describes the development of Prophet algorithm 

for forecasting extreme events in a cold weather region, Bow 

River in Alberta, Canada. To assess the utility of a flood fore- 

casting model with sufficient lead time to conduct emergency 

evacuation plans, the Prophet model is described for estimating 

different lead-times, ranging from 15- to 1-day-ahead of flood- 

ing events. For this approach, Prophet is employed using his- 

torical data to anticipate future events. For example, to forecast 

the events of 21st June 2013, datasets as far ahead as 11th June 

2013 were employed using Prophet, to predict future events 

based on information available on 11th June 2013 to assess its 

accuracy. The predictions are described for 15- and 10-day- 

ahead, and 12-hour-ahead, as described in the next section. 

2. Methodology 

2.1. Study Area and Datasets 

The basin of Bow River at Banff follows the main valley 

of the Bow River through mountainous terrain with glaciers 

and icefields. The ecosystems presented in the surroundings of 

Banff National Park are montane (~ 3%), subalpine (~ 53%), 

and alpine (~ 27%). Forests cover 44% of Banff National Park, 

primarily in valley bottoms and lower mountain hillslopes (Van 

Wagner et al., 2006). The upper Bow River receives an annual 

precipitation of 500 to 700 mm, with half falling as snow, while 

Calgary receives 412 mm of annual precipitation, with 78% of 

in the form of rain. (Bow River Basin Council, 2010). Figure 2 

presents the map of the study area, with the selected station. 

The flow of the river is greatly impacted by the climate condi- 

tions prevalent in southern Alberta, which are marked by pro- 

longed, chilly winters and brief, hot summers. The Banff area 

has a cold temperate climate, with an average annual tempera- 

ture of –0.4 °C. The dominant hydrological event is melting of 

the winter snowpack combined with the onset of spring rains, 

leading to peak river discharges from May to June. 

The Bow River at Banff hydrometric station has functioned 

since 1909, and data from this site have been used in studies of 

mountain hydrology and flooding (Pomeroy et al., 2016; Rood 

et al., 2016; Whitfield and Pomeroy, 2016). Having lengthy 

records is a critical component for flood forecasting and disas- 

ter warning. The present work applied precipitation records 

(rainfall, snowfall), river flows and temperature time series 

from May 5th, 1909, to June 21st, 2013, recorded daily and 

collected from Environment Canada website for the Banff sta- 

tion in Alberta. In addition, mean daily streamflow data, com- 

piled by Alberta Environment and Parks for the period 1910 ~ 

2010 at Banff station, were also integrated into the model. 

Selections of these locations were based on the dependability 

and availability of the data. 

 

 
 

Figure 2. Location of the Bow River Basin and monitoring 

stations. The figure spans from the starting point of the Bow 

River to a location immediately upstream of Calgary. 

2.2. Proposed Model: Prophet Algorithm 

The Prophet model is an additive model which adjusts to 

achieve smooth curves from complex time series patterns and 

is classified with periodic components (Taylor and Letham, 

2018). The decomposition of time series models involves three 

primary components: trend, seasonality, and holidays. The com- 

ponents are represented in Equation (1) as: 

 

( ) ( ) ( ) ( ) ty t g t s t h t= + + +  (1) 

 

where the trend component of the time series, which captures 

non-periodic fluctuations, is denoted by the function g(t). How- 

ever, the function s(t) takes into consideration regular fluctua- 

tions such as seasonality, while the function h(t) captures the 

impact of holidays that may occur on unpredictable schedules 

lasting for one or more days. The error term t  is responsible for 

capturing any unexplained idiosyncratic changes that are not 

considered by the model. In the flood prediction model, time 

can be used as a regressor, along with multiple linear and non- 

linear functions of time as components. The modeling of sea- 

sonality as an additive component follows a similar approach to 

that achieved through exponential smoothing. (Machiwal and 

Jha, 2012; Zarinmehr et al., 2022). 

The Generalized Additive Models (GAMs) formulation 

offers the benefit of easy decomposition and flexibility to 

incorporate new components as required. This means that it can 

easily accommodate new sources of seasonality, such as the 

influence of climate change, when they are identified. GAMs 

also easily fit the data using back-fitting, in a way that allows 

for interactive manipulation of the model parameter such as 

seasonality (yearly, weekly or daily), growth trend (linear or lo- 

gistic), and regularization (ridge regression). Essentially, the 

Prophet approach to forecasting is being framed as a curve-

fitting task, and hence is distinct from time series models as 

Prophet does not account for the temporal dependence structure 
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inherent in the data, such as present in Elkurdy et al. (2022). 

2.3. How the Algorithm Calculates the Trend Days/Weeks 

Ahead 

Two trend models cover the forecasting applications in the 

Prophet model: a saturating growth model, and a piecewise lin- 

ear model. 

The primary element of the data-generating process in a 

Prophet flow forecasting model involves evaluating the extent 

to which the flow has expanded and the projected growth. Uti- 

lization of Prophet for flow modeling often resembles the growth 

of populations in natural ecosystems, where there is nonlinear 

growth that reaches so-called a “saturation” point at a carrying 

capacity. For example, the carrying capacity for the Bow River 

in Banff region might be the temperature extremes, snowpack, 

and precipitation in that area. 

This type of growth is commonly depicted by the logistic 

growth model, which is typically expressed in its simplest form 

as (2): 

 

( )
( )

1 exp ( )

c
g t

k t m
=

= − −
 (2) 

 

with c as the carrying capacity/flow in the Bow River, k is the 

growth rate, and m is an offset parameter. 

The carrying capacity g(t) is not constant, as g(t) is based 

on the temperature, snowmelt or rainfall increase, as does a 

growth ceiling. Hence, the constant capacity c is being substi- 

tuted with a capacity c(t) that varies with time. Additionally, 

the growth rate “k” is not consistent, and any extreme climate 

event can significantly impact the flow rate in the Bow region. 

As a result, the model includes trend rates to accurately repre- 

sent historical data. 

The growth model has been modified to include specific 

points where the growth rate or flow can change. Assume there 

are s change points at times sj, where j = 1, 2, 3…, s. A set of 

rate adjustments δ   s defined, with δj representing the rate 

change that occurs at time sj. The rate at any given time t is 

calculated as the base rate k, plus the sum of all adjustments up 

to that point: 

 

: js
j

j t
k 


+  (3) 

 

This is represented by defining a vector a(t)   {0, 1}s 

such that: 

 

1,   
( )

0,  otherwise
j

if t sj
a t


= 


 (4) 

The expression k + a(t)Tδ represents the rate at time t. To 

link the endpoints of the segments, it is necessary to modify the 

offset parameter “m” in conjunction with the rate “k”. The 

computation for determining the accuracy adjustment at change 

point j is as follows: 

( ) 1 l

l

l

l j
l j

l
j

j
j

k
s m

k







 

 


 +
 = − − −
 



+




 (5) 

 

The piecewise logistic growth model is then: 

 

( ) ( )( )
( )

( )
1 exp ( ) ( )T T

c t
g t

k a t t m a t 
=

= − + − +
 (6) 

 

The anticipated capacities of the Bow River at any given 

moment, also known as c(t), are a crucial set of parameters in 

this application. 

The trend will have a constant rate when the model is 

extrapolated beyond the forecast timeframe, to make a forecast 

for “x” days in the future. The level of uncertainty in the fore- 

cast trend has been assessed by extending the generative model 

into the future. The trend’s generative model comprises S change 

points across a history of T points. Each point experiences a 

rate change δj, which follows a Laplace distribution with para- 

meters (0, ξ) To forecast future rate fluctuations, the past is 

replicated by replacing ξ with a variance calculated from the 

existing data. A hierarchical approach prior on ξ can be utilized 

within a comprehensive Bayesian framework to attain its poste- 

rior probability. An alternative approach involves the utiliza- 

tion of the maximum likelihood estimate for the rate scale pa- 

rameter, denoted by: 

 

1

1
j

s

js
 

=
=   (7) 

 

The future change points are randomly selected to ensure 

that the frequency of change points aligns with the historical av- 

erage: 

 

3
0 . . ,   

,

~ laplace(0, ) . .

j j

j

T
w p if t s

T
j T

S
w p

T



 

−
= 

  



 (8) 

 

The level of uncertainty in the forecast trend is measured 

by assuming that the future will demonstrate a similar average 

frequency and magnitude of rate changes as observed in the 

historical data up until the point of forecasting. Once the data 

has been used to infer λ, the generative model aims to replicate 

potential future patterns and utilize these patterns to calculate 

intervals of uncertainty. It is assumed that the frequency and 

magnitude of the trend will persist in the same manner as ob- 

served in the past, if the history is robust, containing alternative 

(earlier) scenarios; while it cannot be guaranteed that the uncer- 

tainty intervals will be perfectly accurate, they do provide valu- 

able insight into the degree of uncertainty present, particularly 

regarding overfitting. As the value of ξ increases, the model be- 

comes more adaptable to the historical data, resulting in a re- 

duction of training error. However, when anticipated in the fu- 

ture, this flexibility will lead to significant uncertainty intervals. 
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Overall, the Prophet model is mostly relevant in events where 

historical data are measured as a dependable indicator for fu- 

ture trends, but there is also identification that differences and 

uncertainties occur. It provides an organized way to combine 

this historical data into prediction, while explicitly incorporate- 

ing uncertainty. 

2.4. Performance Indicators 

The comparative performance of the model has been as- 

sessed in terms of MAE, MAPE, RMSE error, and the R2. 

2.4.1. R-Squared (Coefficient of Determination) 

R-squared (see Equation (9)) measures the proportion of 

variance in the dependent variable (y_true) that is explained by 

the independent variables (y_pred). It ranges from 0 to 1, with 

1 indicating a perfect fit: 

 

( )

( )

2

2

2

i i

i i

y y
R

y y

−
=

−




 (9) 

 

where ∑ represents the sum of squared differences between the 

predicted and actual values and y_mean is the mean of the ac- 

tual values. The R2 values for the three extreme events of the 

year 1929, 2012, and 2013 are explained in further detail (Sec- 

tion 3.5, Figure 8). 

The R2 value serves as a statistical indicator that assesses 

the alignment between the Prophet model and the observed 

data. Essentially, the Prophet model quantifies the extent to 

which the model’s p redictions capture the variations in the 

stream flow data. This measure ranges from 0 to 1, with higher 

values indicating a more robust correspondence between the 

predicted and actual values: 

 

2 1
RSS

R
TSS

= −         (10) 

 
where TSS = sum of the squared differences between each ob- 

served value and the mean of the observed values, and RSS = 

sum of the squared differences between each observed value 

and the corresponding predicted value by the model. R2 calcu- 

lates the proportion of the total variance in the dependent vari- 

able (stream flow) that is captured by the model. 

The R2 values for each individual year offer a comparative 

assessment of the model’s ability to predict occurrence over 

various time segments and thus enable it to be evaluated as ef- 

ficient at matching forecasts with observed stream flow data in 

any given year. Each R2 value indicates how well the Prophet 

model’s predictions are at aligning with observed streamflow 

data for this period, representing its goodness-of-fit to that par- 

ticular year. 

2.4.2. RMSE (Root Mean Squared Error) 

RMSE is calculated by taking the square root of the aver- 

age of the squared differences between the predicted values and 

the actual values (see Equation (11)). The RMSE ranges from 

0 to ∞, and lower values indicate fewer errors between the 

model predictions and the actual values: 

 

( )
2

1

n

i i
i

y y
RMSE

n

=
−

=


 (11) 

 

Figure 3 shows the Root Mean Square Error for “Normal” 

and “Extreme Event”. The lower the RMSE values, the higher 

the prediction accuracy. Figure 3 shows lower RMSE values 

for 24 h and 5-head-day predictions in comparison to 10- and 

15-head-day streamflow predictions indicating a better perfor-

mance accuracy. 

 

 
 

Figure 3. Measures for forecast accuracy. 

2.4.3. MAE (Mean Absolute Error) 

MAE is the difference between the actual and predicted 

values (see Equation (12)). The values range from 0 to ∞, and 

lower values indicate less error in model predictions. 

 

1

1 n

i i
i

MAE y y
n =

= −  (12) 

 

Figure 3 shows the MAE for “Normal” and “Extreme” 

event (such as in 2013), respectively. The lower the MAE the 

better is the prediction accuracy. Figure 3 shows lower MAE 

value for 24 h, 5-head-day prediction in comparison to 10- and 

15-head-day stream flow prediction. Lower MAE value in 24 

h, 5-head-day prediction indicates lower variation of stream-

flow prediction from the actual values depicting the utility of 

the Prophet model. 

2.4.4. MAPE (Mean Absolute Percent Error) 

A slight modification of MAE in which the difference be- 

tween predicted and observed examples is divided by the true 

value predictions and can constrain the error to a smaller range: 
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The MAPE for the extreme event of 2013 has been calcu- 

lated to be 4.89%, indicating that the prediction is acceptably 

accurate. 

3. Results and Discussion 

The time series used in this study is the daily flow of the 

Bow River at Banff Basin. The time series utilized encompasses 

the period from May 5th, 1909, to June 21st, 2013, and is divided 

into training and test datasets. It is noted that the dataset avail- 

able for this research continues up to October 31st, 2022; how- 

ever, for the prediction analyses for 2013 (the catastrophic 

flood event of that year) data utilized were restricted only to 

data prior to the date of forecasting. For example, for 5-day-

ahead prediction for June 21st, 2013, the training data consists 

of historical information up to 16th June 2013. 

3.1. Prediction Accuracy for 1-Day Ahead Prediction 

Figure 4 shows 1-day-ahead prediction for the 21st, June 

2013 event and the temporal variations of the actual flow of 

Bow River. The discrepancy between the forecast value and the 

actual flow is the timeframe ahead where the prediction is 24-

hour-ahead. The June 21st, 2013 is considered an extreme event 

in this research as this was the time of one of the most extreme, 

destructive flood events that have occurred in Canada. The 

comparative difference between the observed and 1-day-ahead 

prediction considering the extreme event time series, or abso- 

lute error, shows that the Bow River flow peaked in June at 450 

m3/s. The 1-day-ahead prediction in the Banff station showed 

an R2 of 0.98, indicating the excellent efficacy of the model. 

 

 
 

Figure 4. Line graph of prediction accuracy, of Prophet algo- 

rithm, using flow time series data of the Bow River at Banff, 

station for 1-day-ahead prediction and the measured flows. 

3.2. Time Series Classification 

This study involves developing predictions for extreme 

event conditions of time series. Extreme event conditions are 

rare occurrences that have a significant impact on the flow, and 

hence, the flood event in the Bow River at Banff station which 

occurred on June 21st, 2013. 

3.3. Prophet Model (15-, 10-, 5-Day and 24-Hour-Ahead 

Predictions) 

Figures 5 show the assembly of 15-day-ahead, and 5-day-

ahead predictions of flow for the Bow River at Banff station for 

2013 extreme event. The predictions for the different timesteps 

are: 

 

 
 

Figure 5. Streamflow predictions for the bow river at banff 

station during the 2013 extreme event: a comparative analysis 

across varied forecast horizons using the prophet model (a) 

pre- diction 15-day-ahead, (b) prediction 5-day-ahead. 

 

(a) 15- and 10-day-ahead prediction. The longer the forecast- 

ing horizon, the lower is the accuracy of the Prophet model. 

The 15- and 10-day-ahead prediction for the 2013 extreme event 

is 91.50 and 91.80% accuracy to the actual flow. As the fore- 

casting horizon is increased (forecasting further into the fu- 

ture), the instability of predictions increases (less accuracy). 

(b) 5-day-ahead prediction. Prophet was also used to make 
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predictions by using a 5-day-ahead forecast horizon. The “time 

stamp” column also known as “ds” is set for the 5-day-ahead 

prediction and then the model initiates predictions for each of 

the specific dates. The 5-day-ahead prediction for the 2013 

extreme event is 96.10% accurate to the actual flow on June 

21st, 2013. 

(c) 24-hour-ahead prediction. The 24 h prediction requires 

the historical data of the past to forecast the next 24 h. The 

datasets used in this study were for the year 1909 and are in 

time series format with relative timestep flow values. The 24 h 

prediction for the flood (i.e., 2013 extreme event) is 98.80% 

accurate to the actual flow. 

As apparent, the predictions continue to improve for the 

June 21st, 2013, event. The predictions 5-day-ahead and 24-

hour-ahead are 96.10 and 98.80% accurate, respectively, to the 

actu- al event on June 21st, 2013. 

3.4. Prophet Model Predictions for Peak Stream Flows 

The model prediction accuracy 5-day-ahead increases in a 

linear trend with the increase of the historical flow data. To 

demonstrate this aspect, the prediction accuracy for an earlier 

event (recall that the 1929 year had only 20 years of historical 

data from which to learn); Figure 6 shows the prediction accu- 

racy for the year 1929, the model achieves an accuracy of 

87.50% to the actual flow (i.e. lesser accuracy because there 

were fewer data available for the model to “learn” from avail-  

able data). As further demonstration, the Prophet model was 

used to predict the 5-day-ahead peak flow in 2012 (using only 

the data available up to the time of prediction), the accuracy 

increased to 93.50%, indicating improved model’s predictive 

ability with the increase of available, historical data. In 2013, 

the accuracy further increased to 96.10% to the actual flow. 

Clearly, the model’s ability to provide accurate forecasts in- 

creases with an increase of historical data. 

 

 
 

Figure 6. Prophet model prediction accuracy in percentage 

for several peak flows predicted 5 days ahead. 

The 5-day-ahead Prophet model prediction for 1929 and 

2012 extreme events is shown in Figure 7. The predictions uti- 

lize the past trends, seasonal influences, and the fluctuations in 

stream flow. By providing increased availability of data pre- 

ceding historical events, Prophet makes predictions for extreme 

events such as 1929, 2012, and 2013 flood across the Bow River 

at Banff station. 

3.5. Evaluation Metric of the Prophet Model 

Figure 8 shows R2 values of 0.9830, 0.9810 and 0.9700 for 

the three extreme events of the year for 1929, 2012 and 2013. 

The R2 value of the year 2013 is lower than 1929 due to the 

change of underlying patterns, trends, and seasonal conditions 

of stream flows over the given time period. Other factors such 

as climate change, environmental variations, or human inter- 

ventions (e.g., dam constructions, land use changes) could have 

influenced stream flow patterns over the years. Lower R2 val- 

ues, is due to unexpected changes or events occurring in 2013 

that differ considerably from R2 value is comparatively lower 

than the year 1929, but the model’s prediction accuracy is high- 

er (as shown in Figure 8). 

 

 
 

Figure 7. Stream flow predictions (5-day-ahead) for the Bow 

River at banff station during the 1929 and 2012 extreme event. 
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Figure 8. Graph showing R2 value of 1929, 2012 and 2013 

ex- treme flood events. 

 

The interpretation of R2 is crucial when using it as an eval- 

uation metric. A value close to 1 indicates a strong fit, indicat- 

ing that the model closely replicates the observed data trends. 

Within the Prophet framework, this metric is valuable for com- 

paring different model iterations or configurations. Models with 

higher R2 values are typically preferred as they have a better 

ability to capture the variability in stream flow, which can re- 

sult in more precise predictions. 

3.6. Evaluation of Two Different Time Series Forecasting 

Models for Stream Flow Prediction 

This study involves “degree” to which, for example, day-

ahead forecasting of stream flow can be done so that necessary 

action can be undertaken in the events of flows at a level that 

will ultimately cause flooding. Issues such as these have been 

investigated (e.g., Elkurdy et al., (2022)) for the Bow River 

where they reported the use of Group Method of Data Handling 

(GMDH) model for advanced recognition of the flooding of the 

Bow River in Alberta, Canada. The GMDH method performed 

well for stream flow predictions with 3-hour-ahead time and 

has shown an R2 value of 0.90 with 17-hour-ahead prediction. 

However, when the timestep of the model is increased from 17 

to 24 h, the model quickly loses its robustness and accuracy. A 

comparison of evaluation metrics for the GMDH and the 

Prophet model is indicated in Table 2. The GMDH model shows 

R2, RMSE, and MAE values of 0.64. 46.80 and 6.70, respect- 

tively, with a disparity in accuracy and delineating the absence 

of trend between the target and the dependent variables. The 

GMDH model performs well with a timestep of 17 h, but the 

accuracy significantly decreases with a timestep prediction of 

120 h or 5-day-ahead such that the utility of the model becomes 

minimal. 

As evident from Table 2, the Prophet model features a bet- 

ter prediction of time series data with higher evaluation metrics 

of R2, RMSE, and MAE values of 0.97, 41.70, and 3.19 as com- 

pared to that of the GMDH model. The Prophet model shows a 

higher accuracy of prediction with 120-hour-ahead or 5-day-

ahead of time as compared to the GMDH model which has 3 h 

timesteps of predictability. A comparison with the GMDH mod- 

el is used to demonstrate the comparability to the Prophet mod- 

el as shown in Table 3. 

 

Table 2. Evaluation Metrics for GMDH and Prophet Model at 

5 Days Ahead Prediction 

Evaluation Metrics GMDH Model Prophet Model 

R2 0.64 0.97 

RMSE 46.80 41.70 

MAE 6.70 3.19 

 

Moreover, aside from its ability to make long-term fore- 

casts, the Prophet algorithm offers significant benefits as an ad- 

ditive model that maintains consistent nonlinear trends with dai- 

ly, weekly, and yearly seasonality. The Prophet also works with 

diverse components such as trend. As a result, the model shows 

higher accuracy and can work with missing data (i.e., datasets 

in which some data points are missing). Elkurdy et al. (2022) pre- 

sented GMDH model which does not have the ability to work 

with the missing data. The Prophet model also performs well 

with the outliers and addresses the collinearity between the in- 

put variables. In the case of an extreme event such as of June 

21st, 2013 the Prophet model has shown an R2 value of 0.97 in 

5-day-ahead prediction. The higher R2 value indicates the better 

performance of the model and its ability to make correct predic- 

tions. The Prophet model with higher accuracy can follow the 

trends and historical patterns of the data and can make predic- 

tions close to the actual values. 

3.7. Comprehensive Data Integration 

Our study leverages an extensive dataset spanning over a 

century, from May 5th, 1909, to June 21st, 2013, collected from 

the Bow River at Banff Basin, Calgary. This dataset includes 

daily records of river flow, precipitation (both rainfall and snow- 

fall), and temperature, offering a comprehensive view of the 

hydrological patterns in the region. The inclusion of snow data 

is particularly significant, as snowmelt contributes substan- 

tially to river flow in cold regions. This detailed and diverse 

dataset allows the model to capture a wide range of hydrolog- 

ical variability, improving its predictive performance. The use 

of such a comprehensive dataset ensures that the model is 

trained on a variety of scenarios, making it more robust and re- 

liable in predicting future events. This extensive dataset en- 

hances the model’s ability to identify and learn from historical 

trends, seasonal variations, and extreme events, which are cru- 

cial for accurate long-term forecasting. Recent studies high- 

light the importance of integrating diverse hydrological data to 

improve forecasting models, reinforcing the value of our com- 

prehensive approach (Slater et al., 2023). 

3.8. Practical Implications 

The practical implications of our study are profound, espe- 

cially in the context of flood risk management and early warn- 

ing systems. Accurate and timely flood forecasts are critical for 

mitigating the impacts of flooding, including loss of life, prop- 

erty damage, and economic disruption. The Prophet model’s 

ability to provide reliable forecasts with sufficient lead time of-



A. A. Dash et al. / Journal of Environmental Informatics Letters 13(1) 1-13 (2025) 

10 

 

Table 3. Comparison of Elkurdy et al. (Elkurdy et al., 2022)’s GMDH Model and Prophet Model 

Comparison Criteria GMDH Model Prophet Model 

Evaluation Metrics (R², RMSE, 

MAE) 

The evaluation metrics of the model for 24h-day-

ahead is R2, RMSE and MAE are 0.64, 46.80 and 

6.70 respectively. 

The evaluation metrics of the model for 24h-day-

ahead is R2, RMSE and MAE is 0.97, 41.70 and 

3.19 respectively. 

Trend and Noise Disparity with accuracy, and mostly noisy, without 

featuring any trend between the factors and target 

variables. 

The time series data are constructed using an 

additive model, which incorporates non-linear 

trends and accounts for yearly, weekly, and daily 

seasonality. Prophet implements an additive 

regression model with elements such as a 

piecewise linear model, where the model 

automatically identifies change points in the data 

and indicates any change in the trend. 

Inclusion of Important Regressors Absence of inclusion of important 

regressors such as snowpack, precipitation 

etc. 

Performs efficiently with time series exhibiting 

prominent seasonal patterns and multiple seasons 

of past data. (Including temperature, 

precipitation, and snowpack data) 

Overfitting The quality of the prediction result is affected due 

to overfitting. 

The model doesn’t require performing data 

preprocessing and works with missing data along 

with several outliers. 

Prediction of Extreme Events The model was able to predict the dailyflow rate 

accurately but has a limitation in predicting the 

implications of severe and unpredictable 

conditions. 

The model showed a greater accuracy than 

GMDH model of prediction for extreme events. 

Short-term Prediction Accuracy The model has been able to predict 17 h ahead 

effectively but the accuracy declined with 

subsequent hours. 

The model was able to predict on a weekly, 

monthly and quarterly basis with difference in 

accuracy. 

Handling Extreme Events (e.g., 

2013) 

The daily model suffers from poor prediction in 

case of extreme events such as for 2013 event. 

The model predicted well for the extreme event 

such as 21st June 2013 with a R2 value of 0.97. 

Lead Time for High-Flow Events The hourly prediction model predicts high flows 3h 

advance in time, thus allowing only minimal time 

intervals for the community to take the necessary 

steps to minimize flooding impacts. 

The model has been able to predict with greater 

accuracy, 3 to 4 days ahead, thereby allowing 

necessary steps to be taken to warn of imminent 

flooding. 

Overall Prediction Horizon The model shows greater accuracy with extreme 

low time intervals such as 3 h. 

The model can predict accurately 5 days or (120 

h) ahead. 

 

fers several key benefits. Enhanced early warning systems can 

alert residents and authorities in advance, enabling timely evac- 

uations and preparations to minimize the impact of flooding. Im- 

proved emergency response planning is another significant ben- 

efit, as reliable forecasts allow emergency response teams to bet- 

ter allocate resources and plan interventions. This proactive ap- 

proach enhances the efficiency and effectiveness of emergency 

response efforts, reducing potential losses. Additionally, the 

model’s long-term forecasting capabilities provide valuable in- 

sights for infrastructure management and maintenance. Author- 

ities can use these forecasts to plan and implement flood control 

measures, such as reservoir management, levee construction, and 

drainage improvements. By integrating accurate flood forecasts 

into community planning and risk management strategies, com- 

munities can enhance their resilience to flooding events, align- 

ing with recent studies on disaster risk reduction and commu- 

nity resilience. 

3.9. Limitations and Future Work 

While our study demonstrates significant advancements in 

flood forecasting using the Prophet model, several limitations 

warrant further investigation. The model’s accuracy depends 

heavily on the availability and quality of historical data. Signif- 

icant changes in underlying conditions, such as climate change, 

land use changes, or human interventions, may impact the mod- 

el’s predictive performance. Future research should explore meth- 

ods to integrate external factors and covariates that influence 

river flow dynamics, such as real-time meteorological data, land 

use data, and climate change projections. The Prophet model 

may also struggle with datasets that have irregularly spaced time 

intervals or extensive missing data points. Future work should 

investigate approaches to improve the model’s performance in 

handling irregular time series data, such as data imputation tech- 

niques or hybrid models that combine Prophet with other ma- 

chine learning methods. The Prophet model is designed to pro- 

vide accurate forecasts for relatively short to medium-term ho- 

rizons such as three to four weeks ahead. Forecasting further 

into the future, especially beyond a year or two, might lead to 

greatly deterioration/diminished predictions due to the model’s 

reliance on historical patterns and seasonality. 

Furthermore, validating the model’s generalizability and 

robustness by applying it to other river basins and hydrological 

contexts is essential. Future research should involve testing the 

model in diverse geographical and climatic settings to assess 

its applicability and performance across different regions, as 

highlighted in recent hydrological modeling studies. 
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4. Conclusion 

Prophet modeling demonstrates timely accuracy in flood 

prediction, making it an invaluable tool for early warning sys- 

tems aimed at reducing the disastrous impacts of floods. Its 

ability to accurately imitate underlying trend patterns results in 

highly reliable predictions. By integrating historical data with 

current meteorological conditions, Prophet offers excellent po- 

tential as an early warning system, facilitating flood damage re- 

duction. 

In this study of stream flow predictions for 15-, 10-, 5-day, 

and 24-hour-ahead forecasts during an extreme event in the 

Bow River, Banff, the Prophet model showed higher accu- racy 

compared to the GMDH model. This accuracy is crucial for 

allowing warning systems to effectively disseminate infor- 

mation about upcoming floods, thereby mitigating the damage 

caused by such events. The results highlight the utility of artifi- 

cial intelligence in predicting floods for significant events over 

the last several decades. 

Moreover, the modeling results illustrate how the accuracy 

of predictions improves with the Prophet model as the available 

database for model development increases. This enhancement 

is particularly significant for regions with extensive historical 

data, enabling more precise and timely flood forecasts. The 

ability of Prophet to handle large datasets efficiently and its ro- 

bustness to missing data and outliers further underscore its suit- 

ability for real-time flood forecasting applications.  

The extended lead time provided by the Prophet model, 

which accurately forecasts up to 5-day-ahead, is a substantial 

improvement over the 17-hour lead time of the GMDH model. 

This extended forecasting capability allows for more proactive 

measures, better resource allocation, and enhanced community 

preparedness. As a result, communities can respond more ef- 

fecively to impending flood events, reducing the socio-eco- 

nomic impacts and enhancing overall resilience. 

In the future, expanding the use of the Prophet model to 

incorporate real-time meteorological data, climate change pro- 

jections, and land-use changes will further improve its accuracy 

and applicability. Additionally, testing the model in diverse ge- 

ographical regions and integrating external factors, such as 

glacier melt and hydrological variability, could broaden its use 

for flood risk management in different contexts. The model’s 

potential applications extend beyond flood forecasting to other 

time series prediction tasks in hydrology, offering a pathway to 

more resilient and informed decision-making in water resource 

management. 

Therefore, the Prophet model’s superior accuracy, scala- 

bility, and user-friendliness make it a highly effective tool for 

flood forecasting. Its integration into early warning systems pro- 

vides the opportunity to significantly enhance flood risk man- 

agement, offering a reliable and efficient means to safeguard 

communities against the adverse effects of flooding. The study’s 

findings underscore the importance of using advanced machine 

learning models like Prophet to improve the pre-dictability and 

management of flood risks. 
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