Open Access Open Access  Restricted Access Subscription Access

doi:10.3808/jeil.202300102
Copyright © 2024 ISEIS. All rights reserved

Parametric Design and Field Behavior of Earthen Structures

R. Paranthaman1 and S. Azam1 *

  1. Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada

*Corresponding author. Tel.: 01-306-337-2369; fax: 1-306-585-4855. E-mail address: shahid.azam@uregina.ca (S. Azam).

Abstract


The stability of earthen structures is governed by field uncertainties arising from material properties, environment loading, and slope geometry. This research devised a systematic approach to capture the effects of field uncertainties on the stability of natural and manmade slopes. New design charts were developed by incrementally changing slope geometry and randomly generating shear strength parameters. Subset simulation was used to determine the safe range of soil properties for various slopes. The charts were applied to three published case studies with distinct triggering mechanisms resulting from complex field settings. All of the investigated slopes were found to be stable (factor of safety (FOS) > 1.0) under the reported geometry and shear strength parameters while assuming no water table. The effects of soil properties’ variation and environmental conditions on fluctuating water table were captured through history matching. Results indicated three distinct failure mechanisms: foundation settlement of a glacial moraine till (Vernon, British Columbia) due to an increased pore water pressure during construction of the compacted fill (FOS = 1.45 without berms and 2.24 with berms); instability in the natural cut (FOS = 0.98) comprising layered glacio-lacustrine clays (Labret, Saskatchewan) due to saturation of the entire slope resulting from a long duration rainfall; and collapse of a compacted fill (FOS = 0.98) on a glacial moraine till (Hamelin Creek, Alberta) due to soil saturation arising from thawing of a frozen layer in the slope. This validation illustrates that the new approach fully captures environmental loading (resulting in water table variation in the slope) and partly captures construction practice and site geology via soil properties.

Keywords: slope stability, parametric design, soil properties, environmental loading


Full Text:

PDF

Supplementary Files:

Refbacks

  • There are currently no refbacks.